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Classification Problem
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Feature Map
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Feature Map

o (x1,x) — (X127X22,\/§X1X2)

Data in Input Space
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Feature Map

¢ (x1, %) — (X2, x2,V/2x1%0)

Data in Input Space
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(D(x), p(2))rz = X222 + X325 + 2(x1x2)(2122) = (x121 + x222)? = (x - 2)?

Question: How to generalize the idea of implicit feature map?
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Recipe for ML Problems
. Collect a data set D = {x1,x2,..., Xn}-

. Specify or learn a feature map ¢ : X — H.

. Apply the feature map Dy = {¢(x1), d(x2), ..., d(xn)}.
. Solve the (easier) problem in the feature space H using D.


https://xkcd.com/655/

Representation Learning

Perceptron!: f(x) = w'x+ b

Explicit Representation Implicit Representation

v i Perceptron

f(x) = w, o(wy x + by) + by f(x) = w'¢(x) + b

1Rosenblatt 1958; Minsky and Papert 1969



Kernels

A function k : X x X — R is called a kernel on X if there exists a Hilbert
space H and a map ¢ : X — H such that for all x,x’ € X we have

k(x,x") = (p(x), (X)) 2

We call ¢ a feature map and H a feature space associated with k.
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Kernels

A function k : X x X — R is called a kernel on X if there exists a Hilbert
space H and a map ¢ : X — H such that for all x,x’ € X we have

k(x,x") = (p(x), (X)) 2

We call ¢ a feature map and H a feature space associated with k.

Example

L. k(x,x') = (x-x')? for x,x' € R?
> B(x) = (x4, %3, V2xix2)
> H =R

2. k(x,x')=(x-x +¢c)™, x,x € RY
> dim(H) = (“")

3. k(x,x) = exp (—]x - x'[B)
> H =R™




Positive Definite Kernels

A function k: X x X — R is called positive definite if, for all n € N,
ag,...,ap € Rand all xq,...,x, € X, we have

k(xi,x1) -+ k(x1,%n)

aTKa:ZZa,-ajk(XjaXi)ZO, K:= : : :
i=1 j=1 k(X,,,X1) k(XnaXn)

Equivalently, the Gram matrix K is positive definite.
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Positive Definite Kernels

A function k: X x X — R is called positive definite if, for all n € N,
ag,...,ap € Rand all xq,...,x, € X, we have

k(xi,x1) -+ k(x1,%n)

o' Ka = zn:zn:a,-ajk(xj,x;) >0, K:=

i=1 j=1 k(X,,,X1) k(XnaXn)

Equivalently, the Gram matrix K is positive definite.

Any explicit kernel is positive definite
For any kernel k(x, x") := (#(x), ¢(x'))n,

ZZan XJ,X, —<Za,¢x, Zaj¢xj> > 0.

i=1 j=1 H

Positive definiteness is a necessary (and sufficient) condition.




Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of real-valued functions on X.

2N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337—-404, 1950.
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Let H be a Hilbert space of real-valued functions on X.

1. The space H is called a reproducing kernel Hilbert space (RKHS)
over X if for all x € X’ the Dirac functional d, : H — R defined by

Ix(f) == f(x), feH,

is continuous.

2N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337-404, 1950. 11/53
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2. A function k: X x X — R is called a reproducing kernel of H if
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Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of real-valued functions on X.

1. The space H is called a reproducing kernel Hilbert space (RKHS)
over X if for all x € X’ the Dirac functional d, : H — R defined by

Ix(f) == f(x), feH,

is continuous.

2. A function k: X x X — R is called a reproducing kernel of H if
k(-,x) € H for all x € X and the reproducing property

f(X) = <fa k('ax»’H
holds for all f € H and all x € X.

Aronszajn (1950)2: “There is a one-to-one correspondance between the
reproducing kernel k and the RKHS H".

2N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337-404, 1950.



RKHS as Feature Space

Reproducing kernels are kernels

Let H be a Hilbert space on X with a
reproducing kernel k. Then, H is an
RKHS and is also a feature space of k,
where the feature map ¢ : X — H is given
by

6(x) = k(-,x).

We call ¢ the canonical feature map.



RKHS as Feature Space

Reproducing kernels are kernels

Let H be a Hilbert space on X with a
reproducing kernel k. Then, H is an
RKHS and is also a feature space of k,
where the feature map ¢ : X — H is given
by

6(x) = k(-,x).

We call ¢ the canonical feature map.

Proof
We fix an x’ € X’ and write f := k(-,x’). Then, for x € X, the
reproducing property implies

(6(x), ¢(x)) = (k(-,X), k(-, %)) = (F, k(- %)) = f(x) = k(x,x).



RKHS as Feature Space

Universal kernels (Steinwart 2002)

A continuous kernel k on a compact metric space X is called universal if
the RKHS H of k is dense in C(X), i.e., for every function g € C(X)
and all € > 0 there exist an f € H such that

If — gl <e.



RKHS as Feature Space

Universal kernels (Steinwart 2002)

A continuous kernel k on a compact metric space X is called universal if
the RKHS 7 of k is dense in C(X), i.e., for every function g € C(X)
and all € > 0 there exist an f € H such that

If —glloo <&

Universal approximation theorem (Cybenko 1989)
Given any ¢ > 0 and f € C(X), there exist

h(x) = Z aip(w;" x + b;)
i=1

such that |f(x) — h(x)| < e for all x € X.
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Quick Summary

> A positive definite kernel k(x,x’) defines an implicit feature map:

k(x, x") = (¢(x), d(x")) 2

» There exists a unique reproducing kernel Hilbert space (RKHS) #
of functions on X for which k is a reproducing kernel:

f(X) = <f7 k('7X)>'H7 k(Xv X/) = <k('aX)7 k('>X/)>'H-

» Implicit representation of data points:

> Support vector machine (SVM)
» Gaussian process (GP)
> Neural tangent kernel (NTK)

» Good references on kernel methods.

» Support vector machine (2008), Christmann and Steinwart.
» Gaussian process for ML (2005), Rasmussen and Williams.
» Learning with kernels (1998), Schdlkopf and Smola.



From Points to Probability Measures



Probability Measures

Learning on
Distributions/Point Clouds

piS

Generalization across
Environments

0

| unseen test data

Group Anomaly/O0D
Detection
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Statistical and Causal Inference



Embedding of Dirac Measures

Input Space X Feature Space H
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Embedding of Dirac Measures

Input Space X Feature Space H




Embedding of Marginal Distributions
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Kernel mean embedding
Let & be a space of all probability measures P. A kernel mean
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Embedding of Marginal Distributions

Probability measure
Let P be a probability measure defined on a measurable space (X, X)
with a o-algebra ¥.

Kernel mean embedding
Let & be a space of all probability measures P. A kernel mean
embedding is defined by

p: P —=H, P [k(,x)dP(x).

Remark: The kernel k is Bochner integrable if it is bounded.



Embedding of Marginal Distributions

> If Ex.p[v/k(X, X)] < o0, then for up € H and f € H,

(f, pp) = (f,Ex~plk(-, X)]) = Ex~p[{f, k(-, X))] = Ex~p[f(X)].



Embedding of Marginal Distributions

> If Exp[/k(X, X)] < 00, then for up € H and f € H,
(f, up) = (f, Ex~p[k(-, X)]) = Ex~p[(f, k(-, X))] = Ex~p[f(X)].
» The kernel k is said to be characteristic if the map
P— pp

is injective, i.e., ||up — pgllx =0 if and only if P = Q.



Interpretation of Kernel Mean Representation

What properties are captured by jip?

> k(x,x") = (x,x) the first moment of P
> k(x,x") = ({x,x") +1)P moments of P up to order p € N
> k(x,x’) is universal/characteristic all information of PP



Interpretation of Kernel Mean Representation

What properties are captured by pp?
the first moment of P

moments of P up to order p € N
all information of P

> k(x,x") = (x,x)
> k(x,x) = ((xx') +1)°
> k(x,x’) is universal/characteristic

Moment-generating function
Consider k(x,x') = exp((x,x’)). Then, pup = Exp[eX"].



Interpretation of Kernel Mean Representation

What properties are captured by pp?

> k(x,x") = (x,x)
> k(x,x") = ((x,x"y + 1)P moments of P up to order p € N
all information of P

the first moment of P

> k(x,x’) is universal/characteristic

Moment-generating function
Consider k(x,x') = exp((x,x’)). Then, pup = Exp[eX"].

Characteristic function
If k(x,y) =¢¥(x — y) where 1 is a positive definite function, then

pp(y) = /w(x —y)dP(x) = Ak - pp

for positive finite measure Ag.
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may not be universal.
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Characteristic Kernels

» All universal kernels are characteristic, but characteristic kernels
may not be universal.
» Important characterizations:

> Discrete kernel on discrete space

» Shift-invariant kernels on RY whose Fourier transform has full support.
> Integrally strictly positive definite (ISPD) kernels

» Characteristic kernels on groups

» Examples of characteristic kernels:

Gaussian RBF kernel Laplacian kernel

/|2 o
k(x,x') = exp <_x20)2(||2> k(x,x") = exp <_||xx||1>

g

» Kernel choice vs parametric assumption
» Parametric assumption is susceptible to model misspecification.
» But the choice of kernel matters in practice.
> We can optimize the kernel to maximize the performance of the
downstream tasks.



Kernel Mean Estimation

» Given an i.i.d. sample xi, X2, ..., x, from P, we can estimate up by

fir =17 k(x,)eH, P=1Y7 0.

3Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
4Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.
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Kernel Mean Estimation
» Given an i.i.d. sample xi, X2, ..., x, from P, we can estimate up by
pr =10 k0o ) €, P=1Y1,05,

» For each f € H, we have E, 5[f(X)] = (f, fip).
» Consistency: with probability at least 1 — 4,

N ]Ex,\,]p[k(X,X)] 2|Og%
_ <2 .
[ — pelly < - + -
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Kernel Mean Estimation
» Given an i.i.d. sample xi, X2, ..., x, from P, we can estimate up by
pr =10 k0o ) €, P=1Y1,05,

» For each f € H, we have E, 5[f(X)] = (f, fip).
» Consistency: with probability at least 1 — 4,

~ ]Ex,\,]p[k(X,X)] 2|Og%
_ <2 .
[ — pelly < - + -

» The rate O,(n~1/2) was shown to be minimax optimal.3

3Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
4Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.



Kernel Mean Estimation
» Given an i.i.d. sample xi, X2, ..., x, from P, we can estimate up by
pr =10 k0o ) €, P=1Y1,05,

» For each f € H, we have E, 5[f(X)] = (f, fip).
» Consistency: with probability at least 1 — 4,

N ]Ex,\,]p[k(X,X)] 2|Og%
_ <2 .
[ — pelly < - + -

» The rate O,(n~1/2) was shown to be minimax optimal.3

» Similar to James-Stein estimators, we can improve an estimation by
shrinkage estimators:*

fo =af* +(1—a)ap, f*eH.

3Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
4Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.
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» An approximate pre-image problem
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» The distribution Py is assumed to be in a certain class

K
PQ(X) = ZTF[(N(X . ,U,k,zk), Z’frk =1.

k=1 k=1
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» An approximate pre-image problem
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> Kernel herding generates deterministic pseudo-samples by greedily
minimizing the squared error

HHD**Z

H



Recovering Samples/Distributions
» An approximate pre-image problem
0" = argmin |2 — pue, |3 Py- -

» The distribution Py is assumed to be in a certain class

Z’]TkNX ,uk,Zk Z’frk—l

k=1

> Kernel herding generates deterministic pseudo-samples by greedily
minimizing the squared error

HHD**Z

> Negative autocorrelation: O(1/T) rate of convergence.

H



Recovering Samples/Distributions
» An approximate pre-image problem
0" = argmin |2 — pue, |3 Py- -

» The distribution Py is assumed to be in a certain class

Z’]TkNX ,uk,Zk Z’frk—l

k=1

> Kernel herding generates deterministic pseudo-samples by greedily
minimizing the squared error

HHD**Z

> Negative autocorrelation: O(1/T) rate of convergence.

H

> Deep generative models (see the following slides).
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Quick Summary

» A kernel mean embedding of distribution P

pe ::/k(-,x)dIP(x), fip = %Zk(x,-,-).

> If k is characteristic, pup captures all information about P.
» All universal kernels are characteristic, but not vice versa.

» The empirical fip requires no parametric assumption about P.



Quick Summary

» A kernel mean embedding of distribution P
[HR®, =LY k)
= : == Xis)-
12018 ) ) 120 n -

> If k is characteristic, pup captures all information about P.

» All universal kernels are characteristic, but not vice versa.

» The empirical fip requires no parametric assumption about P.

» It can be estimated consistently, i.e., with probability at least 1 — 6,

. Ex~p[k(X, X)] 2log 3
- <?2 .
|ap — pp|ln < - + -




Quick Summary

>

vvyVvVyy

A kernel mean embedding of distribution P
[HR®, =LY k)
= : == Xis)-
12018 ) ) 120 n -

If k is characteristic, pp captures all information about P.

All universal kernels are characteristic, but not vice versa.

The empirical fip requires no parametric assumption about P.

It can be estimated consistently, i.e., with probability at least 1 — §,

. Ex~p[k(X, X)] 2log 3
- <?2 .
|ap — pp|ln < - + -

Given the embedding fi, it is possible to reconstruct the distribution
or generate samples from it.




Application: High-Level Generalization

Learning from Distributions

JAS

@ KM., Fukumizu, Dinuzzo,
Scholkopf. NIPS 2012.
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Learning from Distributions Group Anomaly Detection
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Schélkopf. NIPS 2012. [3] KM. and Schélkopf, UAI 2013.
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Learning from Distributions Group Anomaly Detection
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Schélkopf. NIPS 2012. [3] KM. and Schélkopf, UAI 2013.
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[2) KM. et al. ICML 2013;
Zhang, KM. et al. ICML 2013



Application: High-Level Generalization

Learning from Distributions Group Anomaly Detection
Qﬁ“\w/\/\/\k
I

@ KM., Fukumizu, Dinuzzo,

KM. and Schélkopf, UAI 2013,
Schélkopf. NIPS 2012. E and Scholkopf, UAI 2013

Domain Generalization Cause-Effect Inference

B
©le)-© S

unseen test data

[2) KM. et al. ICML 2013;

Zhang, KM. et al. ICML 2013 2 Lopez-Paz, KM. et al.

JMLR 2015, ICML 2015.



Support Measure Machine (SMM)

KM, K. Fukumizu, F. Dinuzzo, and B. Schélkopf (NeurlPS2012)

_@7@&

x > k(- Ox > [ k(-,z)ddx( P— [ k(-,z)dP(2)

Training data: (P17y1)7 (]Pg,yg), ‘g (]P’,,,yn) ~ z@ X y

27/5



Support Measure Machine (SMM)

KM, K. Fukumizu, F. Dinuzzo, and B. Schélkopf (NeurlPS2012)

il Wi cor gl Vo i

x — k(-, x) O > [ k(-,2)dox(z) P [k(-,2)dP(z)
Training data:  (P1,y1), (P2, ¥2),...,(Pn,yn) ~ & x Y

Theorem (Distributional representer theorem)

Under technical assumptions on Q2 : [0,4+00) — R, and a loss function
0: (P xR%)™ = RU{+oc}, any f € H minimizing

C(Py,y1, B, [f], ..., Prm, ym, B, [F]) + Q (1 F1)

admits a representation of the form

f—Za, XN]P[k ]—ZO&/JP



Supervised Learning on Point Clouds

Training set (S1,y1),..., (S, ya) with S; = {x"} ~ Py(X).



Supervised Learning on Point Clouds

Training set (S1,y1),..., (S, ya) with S; = {x"} ~ Py(X).

Causal Prediction

X—=Y X<+Y X =Y ?

ra
Lopez-Paz, KM., B. Scholkopf, I. Tolstikhin. JMLR 2015, ICML 2015.




Supervised Learning on Point Clouds

Training set (S1,y1),..., (S, ya) with S; = {x"} ~ Py(X).

Causal Prediction

Lopez-Paz, KM., B. Scholkopf, I. Tolstikhin. JMLR 2015, ICML 2015

Topological Data Analysis

Persistence diagram RKHS vector Statistics

M @ (8) 7w vecor
yo> g L > Ei(up,x) €EHr > .
Z Footkw)

Principal component

- analysis
d

X CR Dy(X)

* Change point analysis

G. Kusano, K. Fukumizu, and Y. Hiraoka. JMLR2018



Domain Generalization
Blanchard et al., NeurlPS2012; KM, D. Balduzzi, B. Schélkopf, ICML2013
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» Maximum mean discrepancy (MMD) corresponds to the RKHS
distance between mean embeddings:

MMD*(P,Q, #) = |lur — poll3; = lleelln — 2(ue, po)n + lugln-



Comparing Distributions

» Maximum mean discrepancy (MMD) corresponds to the RKHS
distance between mean embeddings:

MMD*(P,Q, #) = |lur — poll3; = lleelln — 2(ue, po)n + lugln-
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Comparing Distributions

» Maximum mean discrepancy (MMD) corresponds to the RKHS
distance between mean embeddings:

MMD*(P,Q, #) = |lur — poll3; = lleelln — 2(ue, po)n + lugln-

> MMD is an integral probability metric (IPM):

MMD?*(P,Q,H) :==  sup
het, |lhll<1

/h(x) dP(x) —/h(x) dQ(x)]| .

> If k is characteristic, then ||up — pglls = 0 if and only if P = Q.
> Given {x;}]_; ~ P and {y;}2; ~ Q, the empirical MMD is

MMD2(E, Q, ) sz X, X;) ZZ (¥i»¥))

llj;aél llj;é:

- %szmm.

i=1 j=1
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Kernel Two-Sample Testing
Gretton et al., JMLR2012

P P
A Q
Question: Given {x;}]_; ~ P and {y;}]_; ~ Q, check if P = Q.

Ho:P=Q, H:P#Q
» MMD test statistic:

_——2
t> = MMD,(P,Q,H)

S S A o)

n(n—1) 2o,

where h((x;, yi), (x5, ¥;)) = k(xi, ;) + k(vi, ;) — k(xi, y;) — k(x;, yi)-



Generative Adversarial Networks

Learn a deep generative model G via a minimax optimization

m(gn max E[log D(x)] + E.[log(1 — D(G(2)))]

where D is a discriminator and z ~ A(0, o).

Discriminator Dy Generator Gy

real or synthetic? random noise z

x or Gg(z)
A

.
real data 9
{xi}

% X ><><><>S< synthetic data
x X {Go ()}

lax - ﬂGa(Z)l‘H is zero?
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» The GAN aims to match two distributions P(X) and Gg.

> Generative moment matching network (GMMN) proposed by
Dziugaite et al. (2015) and Li et al. (2015) considers

min [[1x — pey(2)|f5, = min

/ H(X) dP(X) - / oK) aCo(0)|

[ hae - /hd@m}

min sup
0 | hen,|n|<1



Generative Moment Matching Network

» The GAN aims to match two distributions P(X) and Gg.

> Generative moment matching network (GMMN) proposed by
Dziugaite et al. (2015) and Li et al. (2015) considers

. 2
min {|px — t6o(2) [l

P(X)dP(X) — /¢ ) dGe(X)
= min sup /th*/thg
0 | hen,|ihl<1
» Optimized kernels and feature extractors
(Sutherland et al., 2017; Li et al., 2017a)
> Repulsive loss (Wang et al., 2019)
> Optimized witness points (Mehrjou et al., 2019)

» Many tricks have been proposed to improve the GMMN:
» Gradient regularization (Binkowski et al., 2018; Arbel et al., 2018)
> Etc.
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Conditional Distribution P(Y|X)

A collection of distributions £y = {P(Y|X =x) : x € X}.
> For each x € X, we can define an embedding of P(Y|X = x) as

By = / H(Y) dP(Y|X = x) = By u[o(Y)]

where ¢ : Y — G is a feature map of Y.



Embedding of Conditional Distributions

p(y[x)

{ 5 P(Y|X = x)
y

CyxCxx k(x, -)

H Tt g
o ) o
k(x,-) CyxCxx My |x=x

Y
X

The conditional mean embedding of P(Y | X) can be defined as

uY\X H— G, Uy‘x = nyC;)%
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> To fully represent P(Y'|X), we need to perform conditioning and
conditional expectation.

» To represent P(Y|X = x) for x € X, it follows that
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Conditional Mean Embedding

>

>

To fully represent P(Y|X), we need to perform conditioning and
conditional expectation.

To represent P(Y|X = x) for x € X, it follows that
Eyix[o(Y) | X = x] = Uy xk(x,) = CyxCxxk(x, ) =t py|x-
It follows from the reproducing property of G that
Eyix[g(Y)| X =x] = (ny|x. &)g, Vg e€G.
In an infinite RKHS, C;)% does not exists. Hence, we often use
Uyx = Cyx(Cxx +eI)~ "

Conditional mean estimator

fiy) = Zﬁ, Joyi),  B(x) == (K+ nel) ks



Counterfactual Mean Embedding
KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the
distributional treatment effect (DTE)

Py () = Py (")

where Y3 and Y{" are potential outcomes of a treatment policy T.



Counterfactual Mean Embedding
KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the
distributional treatment effect (DTE)

Py () = Py (")

where Y3 and Y{" are potential outcomes of a treatment policy T.
» We can only observe either Py or Py-.



Counterfactual Mean Embedding
KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the
distributional treatment effect (DTE)

Py () = Py (")

where Y3 and Y{" are potential outcomes of a treatment policy T.
» We can only observe either Py or Py-.
» Counterfactual distribution

Py oy (y) = /PYO\XO(Y\X) dPx, (x).



Counterfactual Mean Embedding
KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the
distributional treatment effect (DTE)

Py () = Py (")

where Y3 and Y{" are potential outcomes of a treatment policy T.
» We can only observe either Py or Py-.
» Counterfactual distribution

Py oy (y) = /PYO\XO(Y\X) dPx, (x).

» The counterfactual distribution Py q|1)(y) can be estimated using the
kernel mean embedding.



Quantum Mean Embedding

PHYSICAL REVIEW RESEARCH 1, 033159 (2019)

Quantum mean embedding of probability distributions

Jonas M. Kiibler®,” Krikamol Muandet,” and Bernhard Schélkopf*
Max Planck Institute for Intelligent Systems, 72076 Tiibingen, Germany

®  (Received 15 June 2019; published 9 December 2019)

The kernel mean embedding of ility distributions is ly used in machine learning as an injective
mapping from distributions to functions in an infinite-dimensional Hilbert space. It allows us, for example, to
define a distance measure between probability distributions, called the maximum mean discrepancy. In this
work, we propose to represent probability distributions in a pure quantum state of a system that is described
by an infinite-dimensional Hilbert space and prove that the representation is unique if the corresponding kernel
function is ¢, universal. This enables us to work with an explicit rep ion of the mean ing, whereas
classically one can only work implicitly with an infinite-dimensional Hilbert space through the use of the kernel
trick. We show how this explicit representation can speed up methods that rely on inner products of mean
embeddings and discuss the theoretical and experimental challenges that need to be solved in order to achieve
these speedups.
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Quick Summary

> Many applications requires information in P(Y|X).

> Hilbert space embedding of P(Y|X) is not a single element, but an
operator Uy |x mapping from H to G:

Byix = Uyxk(x,") = CyxCxxk(x,)
(Byix-8¢ = Eyilg(Y)IX =x]

» The conditional mean operator

Uy x := Cyx(Cxx +eI)7 ", z/A{Y|x = Cyx(Cxx +¢Z) 7



Quick Summary

> Many applications requires information in P(Y|X).

> Hilbert space embedding of P(Y|X) is not a single element, but an
operator Uy |x mapping from H to G:

Byix = Uyxk(x,") = CyxCxxk(x,)
(Byix-8¢ = Eyilg(Y)IX =x]

» The conditional mean operator
Z/{y‘X = CYX(CXX +€I)_17 Z:{\le :é\yx(é\xx +EI)_1

» Probabilistic inference such as sum, product, and Bayes rules, can
be performed via the embeddings.
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Instrumental Variable Regression

socioeconomic status

’ A Y
C C \C
season of birth education income

» We aim to estimate a function f from a structural equation model
Y =f(E)+e, Ele| E] # 0.
> We have an instrumental variable / with property E[e | /] =0, i.e.,
E[lY —f(E)|I]=0
> Conditional moment restriction (CMR): E[¢(Z,0)| X] = 0.
Z=(E,Y), X=I, 0=1Ff, (Z,0)=Y —f(E).



Conditional Moment Restriction (CMR)

Newey (1993), Ai and Chen (2003)

There exists a true parameter 6y € © that satisfies
E[¥(Z;00) | X] =0, Px—a.s,

where ¥ : Z x © — R is a generalized residual function.



Conditional Moment Restriction (CMR)

Newey (1993), Ai and Chen (2003)
There exists a true parameter 6y € © that satisfies
E[¥(Z;00) | X] =0, Px—a.s,
where ¥ : Z x © — R is a generalized residual function.
» The function v is known and is problem-dependent, e.g.,

W(Z:0)=Y —f(E), Z=(Y,E),X=10=f.



Conditional Moment Restriction (CMR)
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Conditional Moment Restriction (CMR)

Newey (1993), Ai and Chen (2003)

There exists a true parameter 6y € © that satisfies
E[%(Z;60) | X] =0, Px —as.,
where 9 : Z x © — RY is a generalized residual function.
» The function v is known and is problem-dependent, e.g.,
Pv(Z;0)=Y —f(E), Z=(Y,E),X=1,0=F.
» The CMR implies unconditional moment restriction (UMR):
E[Y(Z;60) " f(X)] =0

for any measurable vector-valued function f : X — R9. The function
f(X) is often called an instrument.

» Given the instruments fi, ..., f,, one can use the generalized
method of moment (GMM) to learn the parameter 6.
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Let .# be a space of instruments f(x).

E[$(Z;60)[X] =0 & fseuyE[%b(Z: bo) " f(X)]| =0

CMR
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» The equivalence above holds if .% is a universal vector-valued RKHS.
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Maximum Moment Restriction (MMR)
KM, W. Jitkrittum, J. Kiibler, UAI2020

Let .# be a space of instruments f(x).

E[$(Z;60)[X] =0 & fseuyE[%b(Z: bo) " f(X)]| =0

CMR
MMR(Z,6,)

» The equivalence above holds if .% is a universal vector-valued RKHS.
> Let pg := Kxp(Z; 0).

MMR(Z,0) = sup  |E[9(Z;0)" £(X)]|
feZ,|f|I<1

= |E[Kx¥(Z;0)]l| »
ol -

> MMR2(.Z,0) = E[¢(Z;0) T K(X, X' )p(Z';0)].



Maximum Moment Restriction (MMR)

KM, W. Jitkrittum, J. Kiibler, UAI2020

Parameter Estimation

Given observations (x;, z;)7_; from P(X, Z), we aim to estimate 6 by

A 2
0 = arggnin MMR (9,0)
ce
= arggnelg =1 Z P(z; K(xi, x;)(z;; 0).

1<l;£J<n



Maximum Moment Restriction (MMR)

KM, W. Jitkrittum, J. Kiibler, UAI2020

Parameter Estimation

Given observations (x;, z;)7_; from P(X, Z), we aim to estimate 6 by

" _—2
0 = argznin MMR (9,0)
€o
= argmin oy Z Y(zi;0) " K(xi, %) (z;; ).
1<l;£J<n

Hypothesis Testing

Given observations (x;, z;)7_; from P(X, Z) and the parameter estimate
0, we aim to test

~

——2 N —2
Ho : MMR (Z,0) =0,  Hy: MMR (%, ) # 0.



Conditional Moment Embedding

E[y(Z;0)|X] RKHS F
“““‘uunu, . . 61 Mal
““" * ”’0,." ______ > ® M@o
/ A
¥ .M92
L 92\

Figure: The conditional moments E[v(Z; 0)|X] for different parameters 0 are
uniquely (Px-almost surely) embedded into the RKHS.

Kernel Conditional Moment Test via Maximum Moment
Restriction (UAI12020)

Paper: https://arxiv.org/abs/2002.09225

Code: https://github.com/krikamol/kcm-test


https://arxiv.org/abs/2002.09225
https://github.com/krikamol/kcm-test

Future Direction

Contact: Website:
krikamol@tuebingen.mpg.de http://krikamol.org


krikamol@tuebingen.mpg.de
http://krikamol.org
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Covariance Operators
> Let H,G be RKHSes on X, ) with feature maps

o(x) = k(x,),  oly) =Ly, ")

» Let Cxx and Cyx be the covariance operator on X and
cross-covariance operator from X to Y, i.e,,

Co = [ 600)@600) dP(X),
Cox = [ o) ®6(X) dB(Y. X)
> Alternatively, Cyx is a unique bounded operator satisfying
(g,Cvxf)g = Cov[g(Y), F(X)].
> If Eyx[g(Y)|X =] € H for g € G, then

CxxEvx[g(Y)|X =] =Cxvg.



Conditional Mean Estimation

> Given a joint sample (x1, y1), - ., (Xn, ¥n) from P(X,Y), we have

. 1< 5 1<
Cxx = - Z¢(Xi) ® ¢(xi), Cyx = n Z‘P(y") ©6(x).
i=1 i=1
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where € > 0 is a regularization parameter and
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Conditional Mean Estimation

> Given a joint sample (x1, y1), - ., (Xn, ¥n) from P(X,Y), we have

Cxx = % Yoo @e(x),  Cyx = % > ely) ® ¢(xi)-
i=1

i=1

» Then, py|, for some x € X' can be estimated as
fiyx = Cyx(Cxx + €Z) "tk(x,-) = O(K + nel,) "tk = Zﬂw i),

where € > 0 is a regularization parameter and

S = [p(y1), -, p(yn)],  Kij = k(xi,x;), ke = [k(x1,x), .., k(xn, x)].

» Under some technical assumptions, fiy|x — py|x as n — 0.
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» By the law of total expectation,
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» By the law of total expectation,
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Kernel Sum Rule: P(X) =", P(X,Y)

» By the law of total expectation,

px = Ex[¢(X)] = Ey[Ex y[¢(X)|Y]]
= Ey[Uxye(Y)] = UxyEy[p(Y)]
= Uxypy

> Let iy = E:il Oé;(p()';,') and ﬁ)qy = é\xyé\;¢ Then,
fx = Z:{\X‘y/ly = 5xyé\;¢ﬁy = T(L + n)\l)*lf_a.

where a = (1, .., )", L = I(yi,yj), and IN.,J = I(yi, ¥j)-
» That is, we have

fix =37 B ()

with 8 = (L + nA\l) Lo



Kernel Product Rule: P(X, Y) = P(Y|X)P(X)

> We can factorize pixy = Exy[o(X) ® ¢(Y)] as

Ey[Exy[¢(X)[Y] ® (Y)]
Ex[Eyx[¢(Y)IX] ® ¢(X)]

Ux yEy[p(Y) @ ¢(Y)]
Uy xEx[p(X) @ ¢(X)]

5Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013
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> We can factorize pixy = Exy[o(X) ® ¢(Y)] as
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Ex[Eyx[p(Y)IX]®o(X)] = Uy xEx[6(X) @ ¢(X)]

> Let py = Ex[¢(X) @ ¢(X)] and u§ = Ey[p(Y) @ ¢(Y)].
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> We can factorize pixy = Exy[o(X) ® ¢(Y)] as
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Kernel Product Rule: P(X, Y) = P(Y|X)P(X)

> We can factorize pixy = Exy[o(X) ® ¢(Y)] as

Ey[Exy[¢(X)[Y]®p(Y)] = UxyEy[p(Y)®p(Y)]
Ex[Eyx[p(Y)IX]®o(X)] = Uy xEx[6(X) @ ¢(X)]

> Let py = Ex[o(X) @ ¢(X)] and 1y = Ey[p(Y) @ ¢(Y)].
» Then, the product rule becomes

pxy =Ux|yp§ = Uy xp-
» Alternatively, we may write the above formulation as

Cxy =Ux)yCyy and Cyx = Uy xCxx
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Kernel Product Rule: P(X, Y) = P(Y|X)P(X)

> We can factorize pixy = Exy[o(X) ® ¢(Y)] as

Ey[Exy[¢(X)[Y]®p(Y)] = UxyEy[p(Y)®p(Y)]
Ex[Eyx[p(Y)IX]®o(X)] = Uy xEx[6(X) @ ¢(X)]

> Let py = Ex[o(X) @ ¢(X)] and 1y = Ey[p(Y) @ ¢(Y)].
» Then, the product rule becomes

pxy =Ux|yp§ = Uy xp-
» Alternatively, we may write the above formulation as
Cxy =Ux)yCyy and Cyx = Uy xCxx

» The kernel sum and product rules can be combined to obtain the
kernel Bayes’ rule.®

5Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013



Calibration of Computer Simulation
Kennedy and O’Hagan (2002); Kisamori et al., (AISTATS 2020)

Figure taken from Kisamori et al., (2020)

(A) ASSEMBLY ~ INSPECTION
elapsed time: A (61, 62) elapsed time: N (63, 6)
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(B) Ordinary Regression € Covariate Shift
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X: number of shipment per day X: number of shipment per day

The computer simulator: r(x,0), 6 € ©.
The posterior embedding: pg|~ = [ ko(-,0) dP-(0]r*)
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