Recent Advances in Hilbert Space Representation of Probability Distributions

Krikamol Muandet

Max Planck Institute for Intelligent Systems Tübingen, Germany

> RegML 2020, Genova, Italy July 1, 2020

Reference

Kernel Mean Embedding of Distributions: A Review and Beyond KM, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf. FnT ML, 2017. [Kernel Methods](#page-3-0)

[From Points to Probability Measures](#page-31-0)

[Embedding of Marginal Distributions](#page-35-0)

[Embedding of Conditional Distributions](#page-84-0)

[Recent Development](#page-102-0)

[Kernel Methods](#page-3-0)

[From Points to Probability Measures](#page-31-0)

[Embedding of Marginal Distributions](#page-35-0)

[Embedding of Conditional Distributions](#page-84-0)

[Recent Development](#page-102-0)

Classification Problem

$$
\phi\;:\;(x_1,x_2)\longmapsto (x_1^2,x_2^2,\sqrt{2}x_1x_2)
$$

$$
\phi\;:\;(x_1,x_2)\longmapsto (x_1^2,x_2^2,\sqrt{2}x_1x_2)
$$

$$
\phi\;:\;(x_1,x_2)\longmapsto (x_1^2,x_2^2,\sqrt{2}x_1x_2)
$$

$$
\phi\;:\;(x_1,x_2)\longmapsto (x_1^2,x_2^2,\sqrt{2}x_1x_2)
$$

$$
\langle \phi(\textbf{x}), \phi(\textbf{z}) \rangle_{\mathbb{R}^3} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2(x_1 x_2)(z_1 z_2) = (x_1 z_1 + x_2 z_2)^2 = (\textbf{x} \cdot \textbf{z})^2
$$

$$
\phi\;:\;(x_1,x_2)\longmapsto (x_1^2,x_2^2,\sqrt{2}x_1x_2)
$$

$$
\langle \phi(\textbf{x}), \phi(\textbf{z}) \rangle_{\mathbb{R}^3} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2(x_1 x_2)(z_1 z_2) = (x_1 z_1 + x_2 z_2)^2 = (\textbf{x} \cdot \textbf{z})^2
$$

Question: How to generalize the idea of implicit feature map?

Recipe for ML Problems

- 1. Collect a data set $D = \{x_1, x_2, ..., x_n\}$.
- 2. Specify or learn a feature map $\phi : \mathcal{X} \to \mathcal{H}$.
- 3. Apply the feature map $D_{\phi} = {\phi(x_1), \phi(x_2), \dots, \phi(x_n)}$.
- 4. Solve the (easier) problem in the feature space H using D_{ϕ} .

Representation Learning

$$
Perceptron1: f(x) = wTx + b
$$

$$
f(\mathbf{x}) = \mathbf{w}_2^{\top} \sigma(\mathbf{w}_1^{\top} \mathbf{x} + \mathbf{b}_1) + b_2
$$

$$
f(\mathbf{x}) = \mathbf{w}^\top \phi(\mathbf{x}) + b
$$

¹Rosenblatt 1958; Minsky and Papert 1969

Kernels

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **kernel** on X if there exists a Hilbert space ${\mathcal H}$ and a map $\phi:{\mathcal X}\to{\mathcal H}$ such that for all ${\mathbf x},{\mathbf x}'\in{\mathcal X}$ we have

 $k(\textbf{x},\textbf{x}') = \langle \phi(\textbf{x}), \phi(\textbf{x}') \rangle_\mathcal{H}$

We call ϕ a feature map and H a feature space associated with k.

Kernels

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **kernel** on X if there exists a Hilbert space ${\mathcal H}$ and a map $\phi:{\mathcal X}\to{\mathcal H}$ such that for all ${\mathbf x},{\mathbf x}'\in{\mathcal X}$ we have

 $k(\textbf{x},\textbf{x}') = \langle \phi(\textbf{x}), \phi(\textbf{x}') \rangle_\mathcal{H}$

We call ϕ a feature map and H a feature space associated with k.

Kernels

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **kernel** on X if there exists a Hilbert space ${\mathcal H}$ and a map $\phi:{\mathcal X}\to{\mathcal H}$ such that for all ${\mathbf x},{\mathbf x}'\in{\mathcal X}$ we have

 $k(\textbf{x},\textbf{x}') = \langle \phi(\textbf{x}), \phi(\textbf{x}') \rangle_\mathcal{H}$

We call ϕ a feature map and H a feature space associated with k.

Example

1.
$$
k(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}')^2
$$
 for $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$
\n
$$
\rightarrow \phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)
$$
\n
$$
\rightarrow \mathcal{H} = \mathbb{R}^3
$$
\n2. $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + c)^m$, $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$
\n
$$
\rightarrow \dim(\mathcal{H}) = \begin{pmatrix} d+m \\ m \end{pmatrix}
$$
\n3. $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||_2^2)$
\n $\rightarrow \mathcal{H} = \mathbb{R}^{\infty}$

Positive Definite Kernels

A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **positive definite** if, for all $n \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and all $x_1, \ldots, x_n \in \mathcal{X}$, we have

$$
\boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) \geq 0, \quad \mathbf{K} := \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}
$$

Equivalently, the Gram matrix K is positive definite.

Positive Definite Kernels

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **positive definite** if, for all $n \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and all $x_1, \ldots, x_n \in \mathcal{X}$, we have

$$
\boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) \geq 0, \quad \mathbf{K} := \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}
$$

Equivalently, the **Gram** matrix K is positive definite.

Any **explicit** kernel is positive definite For any kernel $k(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$,

$$
\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) = \left\langle \sum_{i=1}^n \alpha_i \phi(x_i), \sum_{j=1}^n \alpha_j \phi(x_j) \right\rangle_{\mathcal{H}} \geq 0.
$$

Positive Definite Kernels

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **positive definite** if, for all $n \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and all $x_1, \ldots, x_n \in \mathcal{X}$, we have

$$
\boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) \geq 0, \quad \mathbf{K} := \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}
$$

Equivalently, the **Gram** matrix K is positive definite.

Any **explicit** kernel is positive definite For any kernel $k(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$,

$$
\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) = \left\langle \sum_{i=1}^n \alpha_i \phi(x_i), \sum_{j=1}^n \alpha_j \phi(x_j) \right\rangle_{\mathcal{H}} \geq 0.
$$

Positive definiteness is a **necessary** (and **sufficient**) condition.

Let H be a Hilbert space of real-valued functions on X .

²N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):337–404, 1950.

Let H be a Hilbert space of real-valued functions on X .

1. The space $\mathcal H$ is called a reproducing kernel Hilbert space (RKHS) over X if for all $x \in \mathcal{X}$ the Dirac functional $\delta_x : \mathcal{H} \to \mathbb{R}$ defined by

$$
\delta_x(f) := f(x), \qquad f \in \mathcal{H},
$$

is continuous.

²N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):337–404, 1950.

Let H be a Hilbert space of real-valued functions on \mathcal{X} .

1. The space $\mathcal H$ is called a reproducing kernel Hilbert space (RKHS) over X if for all $x \in \mathcal{X}$ the Dirac functional $\delta_x : \mathcal{H} \to \mathbb{R}$ defined by

$$
\delta_x(f) := f(x), \qquad f \in \mathcal{H},
$$

is continuous.

2. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of H if $k(\cdot, x) \in \mathcal{H}$ for all $x \in \mathcal{X}$ and the **reproducing property**

 $f(x) = \langle f, k(\cdot, x)\rangle_{\mathcal{H}}$

holds for all $f \in \mathcal{H}$ and all $x \in \mathcal{X}$.

²N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):337–404, 1950.

Let H be a Hilbert space of real-valued functions on \mathcal{X} .

1. The space $\mathcal H$ is called a reproducing kernel Hilbert space (RKHS) over X if for all $x \in \mathcal{X}$ the Dirac functional $\delta_x : \mathcal{H} \to \mathbb{R}$ defined by

$$
\delta_x(f) := f(x), \qquad f \in \mathcal{H},
$$

is continuous.

2. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of H if $k(\cdot, x) \in \mathcal{H}$ for all $x \in \mathcal{X}$ and the **reproducing property**

 $f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}}$

holds for all $f \in \mathcal{H}$ and all $x \in \mathcal{X}$.

Aronszajn $(1950)^2$: "There is a one-to-one correspondance between the reproducing kernel k and the RKHS \mathcal{H} ".

²N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):337–404, 1950.

Reproducing kernels are kernels

Let H be a Hilbert space on X with a reproducing kernel k. Then, H is an RKHS and is also a feature space of k , where the feature map $\phi : \mathcal{X} \to \mathcal{H}$ is given by

 $\phi(x) = k(\cdot, x).$

We call ϕ the **canonical feature map**.

Reproducing kernels are kernels

Let H be a Hilbert space on X with a reproducing kernel k. Then, H is an RKHS and is also a feature space of k , where the feature map $\phi : \mathcal{X} \to \mathcal{H}$ is given by

φ x, x $\langle \cdot \rangle$ + - - - - $\phi(x), \phi(x)$ \overline{a}) $k(\mathbf{x}, \mathbf{x}')$) $\langle \cdot, \cdot \rangle$

 $\phi(x) = k(\cdot, x).$

We call ϕ the **canonical feature map**.

Proof

We fix an $\mathsf{x}' \in \mathcal{X}$ and write $f := k(\cdot,\mathsf{x}')$. Then, for $\mathsf{x} \in \mathcal{X}$, the reproducing property implies

$$
\langle \phi(\mathbf{x}'), \phi(\mathbf{x}) \rangle = \langle k(\cdot, \mathbf{x}'), k(\cdot, \mathbf{x}) \rangle = \langle f, k(\cdot, \mathbf{x}) \rangle = f(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}').
$$

Universal kernels (Steinwart 2002)

A continuous kernel k on a compact metric space $\mathcal X$ is called **universal** if the RKHS H of k is dense in $C(\mathcal{X})$, i.e., for every function $g \in C(\mathcal{X})$ and all $\varepsilon > 0$ there exist an $f \in \mathcal{H}$ such that

 $||f - g||_{\infty} \leq \varepsilon.$

Universal kernels (Steinwart 2002)

A continuous kernel k on a compact metric space $\mathcal X$ is called **universal** if the RKHS H of k is dense in $C(\mathcal{X})$, i.e., for every function $g \in C(\mathcal{X})$ and all $\varepsilon > 0$ there exist an $f \in \mathcal{H}$ such that

 $||f - g||_{\infty} \leq \varepsilon.$

Universal approximation theorem (Cybenko 1989) Given any $\varepsilon > 0$ and $f \in C(\mathcal{X})$, there exist

$$
h(\mathbf{x}) = \sum_{i=1}^n \alpha_i \varphi(\mathbf{w}_i^{\top} \mathbf{x} + \mathbf{b}_i)
$$

such that $|f(\mathbf{x}) - h(\mathbf{x})| < \varepsilon$ for all $x \in \mathcal{X}$.

A positive definite kernel $k(x, x')$ defines an implicit feature map:

 $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$

A positive definite kernel $k(x, x')$ defines an implicit feature map:

$$
k(x,x')=\langle \phi(x),\phi(x')\rangle_{\mathcal{H}}
$$

 \blacktriangleright There exists a unique reproducing kernel Hilbert space (RKHS) $\mathcal H$ of functions on X for which k is a reproducing kernel:

$$
f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}}, \qquad k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}}.
$$

A positive definite kernel $k(x, x')$ defines an implicit feature map:

$$
k(x,x')=\langle \phi(x),\phi(x')\rangle_{\mathcal{H}}
$$

In There exists a *unique* reproducing kernel Hilbert space (RKHS) H of functions on X for which k is a reproducing kernel:

$$
f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}}, \qquad k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}}.
$$

 \blacktriangleright Implicit representation of data points:

- \blacktriangleright Support vector machine (SVM)
- \blacktriangleright Gaussian process (GP)
- \blacktriangleright Neural tangent kernel (NTK)

A positive definite kernel $k(x, x')$ defines an implicit feature map:

$$
k(x,x')=\langle \phi(x),\phi(x')\rangle_{\mathcal{H}}
$$

 \blacktriangleright There exists a unique reproducing kernel Hilbert space (RKHS) $\mathcal H$ of functions on X for which k is a reproducing kernel:

$$
f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}}, \qquad k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}}.
$$

 \blacktriangleright Implicit representation of data points:

- \blacktriangleright Support vector machine (SVM)
- \blacktriangleright Gaussian process (GP)
- \blacktriangleright Neural tangent kernel (NTK)
- \blacktriangleright Good references on kernel methods.
	- \triangleright Support vector machine (2008), Christmann and Steinwart.
	- Gaussian process for ML (2005), Rasmussen and Williams.
	- \blacktriangleright Learning with kernels (1998), Schölkopf and Smola.

[Kernel Methods](#page-3-0)

[From Points to Probability Measures](#page-31-0)

[Embedding of Marginal Distributions](#page-35-0)

[Embedding of Conditional Distributions](#page-84-0)

[Recent Development](#page-102-0)

Probability Measures

Learning on Distributions/Point Clouds

Generalization across Environments

Group Anomaly/OOD Detection

Statistical and Causal Inference

Embedding of Dirac Measures

Embedding of Dirac Measures

[Kernel Methods](#page-3-0)

[From Points to Probability Measures](#page-31-0)

[Embedding of Marginal Distributions](#page-35-0)

[Embedding of Conditional Distributions](#page-84-0)

[Recent Development](#page-102-0)

Probability measure

Let P be a probability measure defined on a measurable space (\mathcal{X}, Σ) with a σ -algebra Σ .

Probability measure

Let P be a probability measure defined on a measurable space (\mathcal{X}, Σ) with a σ -algebra Σ.

Kernel mean embedding

Let $\mathscr P$ be a space of all probability measures $\mathbb P$. A kernel mean embedding is defined by

$$
\mu: \mathscr{P} \to \mathcal{H}, \quad \mathbb{P} \mapsto \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}).
$$

Probability measure

Let P be a probability measure defined on a measurable space (\mathcal{X}, Σ) with a σ -algebra Σ.

Kernel mean embedding

Let $\mathscr P$ be a space of all probability measures $\mathbb P$. A kernel mean embedding is defined by

$$
\mu: \mathscr{P} \to \mathcal{H}, \quad \mathbb{P} \mapsto \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}).
$$

Remark: The kernel k is Bochner integrable if it is **bounded**.

 \blacktriangleright If $\mathbb{E}_{X\sim \mathbb{P}}[\sqrt{k(X,X)}]<\infty$, then for $\mu_{\mathbb{P}}\in \mathcal{H}$ and $f\in \mathcal{H}$, $\langle f, \mu_{\mathbb{P}} \rangle = \langle f, \mathbb{E}_{X\sim \mathbb{P}}[k(\cdot, X)] \rangle = \mathbb{E}_{X\sim \mathbb{P}}[\langle f, k(\cdot, X) \rangle] = \mathbb{E}_{X\sim \mathbb{P}}[f(X)].$

• If
$$
\mathbb{E}_{X \sim \mathbb{P}}[\sqrt{k(X,X)}] < \infty
$$
, then for $\mu_{\mathbb{P}} \in \mathcal{H}$ and $f \in \mathcal{H}$,
\n $\langle f, \mu_{\mathbb{P}} \rangle = \langle f, \mathbb{E}_{X \sim \mathbb{P}}[k(\cdot, X)] \rangle = \mathbb{E}_{X \sim \mathbb{P}}[\langle f, k(\cdot, X) \rangle] = \mathbb{E}_{X \sim \mathbb{P}}[f(X)].$

 \blacktriangleright The kernel k is said to be characteristic if the map

 $\mathbb{P}\mapsto \boldsymbol{\mu}_\mathbb{P}$

is **injective**, i.e., $\|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}} = 0$ if and only if $\mathbb{P} = \mathbb{Q}$.

Interpretation of Kernel Mean Representation

What properties are captured by $\mu_{\mathbb{P}}$?

- $\blacktriangleright k(x, x') = \langle x, x' \rangle$
- $\blacktriangleright k(x, x') = (\langle x, x' \rangle)$

the first moment of $\mathbb P$

- moments of $\mathbb P$ up to order $p\in\mathbb N$
- \blacktriangleright $k(x, x')$ is universal/characteristic all information of $\mathbb P$

Interpretation of Kernel Mean Representation

What properties are captured by $\mu_{\mathbb{P}}$?

- $\blacktriangleright k(x, x') = \langle x, x' \rangle$ the first moment of $\mathbb P$ $\blacktriangleright k(x, x') = (\langle x, x' \rangle)$ moments of P up to order $p \in \mathbb{N}$
- \blacktriangleright $k(x, x')$ is universal/characteristic all information of $\mathbb P$

Moment-generating function Consider $k(x, x') = \exp(\langle x, x' \rangle)$. Then, $\mu_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}}[e^{\langle X, \cdot \rangle}]$.

Interpretation of Kernel Mean Representation

What properties are captured by $\mu_{\mathbb{P}}$?

- $\blacktriangleright k(x, x') = \langle x, x' \rangle$ the first moment of $\mathbb P$
- $\blacktriangleright k(x, x') = (\langle x, x' \rangle)$ moments of P up to order $p \in \mathbb{N}$
- \blacktriangleright $k(x, x')$ is universal/characteristic all information of $\mathbb P$

Moment-generating function Consider $k(x, x') = \exp(\langle x, x' \rangle)$. Then, $\mu_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}}[e^{\langle X, \cdot \rangle}]$.

Characteristic function If $k(x, y) = \psi(x - y)$ where ψ is a positive definite function, then

$$
\mu_{\mathbb{P}}(y) = \int \psi(x - y) \, d\mathbb{P}(x) = \Lambda_k \cdot \varphi_{\mathbb{P}}
$$

for positive finite measure Λ_k .

 \blacktriangleright All universal kernels are characteristic, but characteristic kernels may not be universal.

- \blacktriangleright All universal kernels are characteristic, but characteristic kernels may not be universal.
- \blacktriangleright Important characterizations:
	- \blacktriangleright Discrete kernel on discrete space
	- Shift-invariant kernels on \mathbb{R}^d whose Fourier transform has full support.
	- Integrally strictly positive definite (ISPD) kernels
	- \blacktriangleright Characteristic kernels on groups

 \blacktriangleright All universal kernels are characteristic, but characteristic kernels may not be universal.

- \blacktriangleright Important characterizations:
	- **In Discrete kernel on discrete space**
	- Shift-invariant kernels on \mathbb{R}^d whose Fourier transform has full support.
	- \blacktriangleright Integrally strictly positive definite (ISPD) kernels
	- \blacktriangleright Characteristic kernels on groups
- \blacktriangleright Examples of characteristic kernels:

Gaussian RBF kernel

$$
k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\sigma^2}\right)
$$

Laplacian kernel

$$
k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_1}{\sigma}\right)
$$

 \blacktriangleright All universal kernels are characteristic, but characteristic kernels may not be universal.

- \blacktriangleright Important characterizations:
	- \blacktriangleright Discrete kernel on discrete space
	- Shift-invariant kernels on \mathbb{R}^d whose Fourier transform has full support.
	- \blacktriangleright Integrally strictly positive definite (ISPD) kernels
	- \blacktriangleright Characteristic kernels on groups
- \blacktriangleright Examples of characteristic kernels:

Gaussian RBF kernel Laplacian kernel

$$
k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\sigma^2}\right) \qquad k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_1}{\sigma}\right)
$$

\blacktriangleright Kernel choice vs parametric assumption

- \blacktriangleright Parametric assumption is susceptible to **model misspecification**.
- \blacktriangleright But the choice of kernel matters in practice.
- \triangleright We can optimize the kernel to maximize the performance of the downstream tasks.

Given an i.i.d. sample x_1, x_2, \ldots, x_n from $\mathbb P$, we can estimate $\mu_{\mathbb P}$ by

$$
\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot) \in \mathcal{H}, \qquad \widehat{\mathbb{P}} = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.
$$

³Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017. ⁴Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

Given an i.i.d. sample x_1, x_2, \ldots, x_n from $\mathbb P$, we can estimate $\mu_{\mathbb P}$ by

$$
\hat{\mu}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot) \in \mathcal{H}, \qquad \widehat{\mathbb{P}} = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.
$$

► For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.

³Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017. ⁴Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

Given an i.i.d. sample x_1, x_2, \ldots, x_n from $\mathbb P$, we can estimate $\mu_{\mathbb P}$ by

$$
\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot) \in \mathcal{H}, \qquad \widehat{\mathbb{P}} = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.
$$

IF For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.

► Consistency: with probability at least $1 - \delta$,

$$
\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{X \sim \mathbb{P}}[k(X,X)]}{n}} + \sqrt{\frac{2\log\frac{1}{\delta}}{n}}.
$$

³Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017. ⁴Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

Given an i.i.d. sample x_1, x_2, \ldots, x_n from $\mathbb P$, we can estimate $\mu_{\mathbb P}$ by

$$
\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot) \in \mathcal{H}, \qquad \widehat{\mathbb{P}} = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.
$$

IF For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.

► Consistency: with probability at least $1 - \delta$.

$$
\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{X \sim \mathbb{P}}[k(X,X)]}{n}} + \sqrt{\frac{2\log\frac{1}{\delta}}{n}}.
$$

The rate $O_p(n^{-1/2})$ was shown to be minimax optimal.³

³Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017. ⁴Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

Given an i.i.d. sample x_1, x_2, \ldots, x_n from $\mathbb P$, we can estimate $\mu_{\mathbb P}$ by

$$
\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot) \in \mathcal{H}, \qquad \widehat{\mathbb{P}} = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.
$$

IF For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.

► Consistency: with probability at least $1 - \delta$.

$$
\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{X \sim \mathbb{P}}[k(X,X)]}{n}} + \sqrt{\frac{2\log{\frac{1}{\delta}}}{n}}.
$$

The rate $O_p(n^{-1/2})$ was shown to be minimax optimal.³

In Similar to James-Stein estimators, we can improve an estimation by shrinkage estimators: 4

$$
\hat{\boldsymbol{\mu}}_{\alpha} := \alpha f^* + (1 - \alpha) \hat{\boldsymbol{\mu}}_{\mathbb{P}}, \quad f^* \in \mathcal{H}.
$$

³Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017. ⁴Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

 \blacktriangleright An approximate pre-image problem

$$
\theta^* = \arg\min_{\theta} \ \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}_{\mathbb{P}_{\theta}}\|_{\mathcal{H}}^2.
$$

 \blacktriangleright An approximate pre-image problem

$$
\theta^* = \arg\min_{\theta} \ \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}_{\mathbb{P}_{\theta}}\|_{\mathcal{H}}^2
$$

 \blacktriangleright The distribution \mathbb{P}_{θ} is assumed to be in a certain class

$$
\mathbb{P}_{\theta}(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x : \mu_k, \Sigma_k), \quad \sum_{k=1}^{K} \pi_k = 1.
$$

 \blacktriangleright An approximate pre-image problem

$$
\theta^* = \arg\min_{\theta} \ \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}_{\mathbb{P}_{\theta}}\|_{\mathcal{H}}^2
$$

 \blacktriangleright The distribution \mathbb{P}_{θ} is assumed to be in a certain class

$$
\mathbb{P}_{\theta}(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x : \mu_k, \Sigma_k), \quad \sum_{k=1}^{K} \pi_k = 1.
$$

 \triangleright Kernel herding generates deterministic pseudo-samples by greedily minimizing the squared error

$$
\mathcal{E}_\mathcal{T}^2 = \left\| \mu_{\mathbb{P}} - \frac{1}{\mathcal{T}} \sum_{t=1}^\mathcal{T} k(\cdot, \mathbf{x}_t) \right\|_{\mathcal{H}}^2.
$$

 \blacktriangleright An approximate pre-image problem

$$
\theta^* = \arg\min_{\theta} \ \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}_{\mathbb{P}_{\theta}}\|_{\mathcal{H}}^2
$$

 \blacktriangleright The distribution \mathbb{P}_{θ} is assumed to be in a certain class

$$
\mathbb{P}_{\theta}(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x : \mu_k, \Sigma_k), \quad \sum_{k=1}^{K} \pi_k = 1.
$$

 \triangleright Kernel herding generates deterministic *pseudo-samples* by greedily minimizing the squared error

$$
\mathcal{E}_\mathcal{T}^2 = \left\| \mu_{\mathbb{P}} - \frac{1}{\mathcal{T}} \sum_{t=1}^\mathcal{T} k(\cdot, \mathbf{x}_t) \right\|_{\mathcal{H}}^2.
$$

Negative autocorrelation: $O(1/T)$ rate of convergence.

 \blacktriangleright An approximate pre-image problem

$$
\theta^* = \arg\min_{\theta} \ \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}_{\mathbb{P}_{\theta}}\|_{\mathcal{H}}^2
$$

 \blacktriangleright The distribution \mathbb{P}_{θ} is assumed to be in a certain class

$$
\mathbb{P}_{\theta}(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x : \mu_k, \Sigma_k), \quad \sum_{k=1}^{K} \pi_k = 1.
$$

 \triangleright Kernel herding generates deterministic *pseudo-samples* by greedily minimizing the squared error

$$
\mathcal{E}_\mathcal{T}^2 = \left\| \mu_{\mathbb{P}} - \frac{1}{\mathcal{T}} \sum_{t=1}^\mathcal{T} k(\cdot, \mathbf{x}_t) \right\|_{\mathcal{H}}^2.
$$

- \blacktriangleright Negative autocorrelation: $O(1/T)$ rate of convergence.
- Deep generative models (see the following slides).

 \blacktriangleright A kernel mean embedding of distribution $\mathbb P$

$$
\boldsymbol{\mu}_{\mathbb{P}} := \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}), \qquad \hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^{n} k(x_i, \cdot).
$$

 \blacktriangleright A kernel mean embedding of distribution $\mathbb P$

$$
\boldsymbol{\mu}_{\mathbb{P}} := \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}), \qquad \hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot).
$$

If k is characteristic, $\mu_{\mathbb{P}}$ captures all information about \mathbb{P} .

 \blacktriangleright A kernel mean embedding of distribution $\mathbb P$

$$
\boldsymbol{\mu}_{\mathbb{P}} := \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}), \qquad \hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot).
$$

If k is characteristic, $\mu_{\mathbb{P}}$ captures all information about \mathbb{P} . \blacktriangleright All universal kernels are characteristic, but not vice versa.

 \blacktriangleright A kernel mean embedding of distribution $\mathbb P$

$$
\boldsymbol{\mu}_{\mathbb{P}} := \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}), \qquad \hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot).
$$

If k is characteristic, $\mu_{\mathbb{P}}$ captures all information about \mathbb{P} .

- \blacktriangleright All universal kernels are characteristic, but not vice versa.
- \blacktriangleright The empirical $\hat{\mu}_{\mathbb{P}}$ requires no parametric assumption about \mathbb{P} .

 \blacktriangleright A kernel mean embedding of distribution $\mathbb P$

$$
\boldsymbol{\mu}_{\mathbb{P}} := \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}), \qquad \hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot).
$$

If k is characteristic, $\mu_{\mathbb{P}}$ captures all information about \mathbb{P} .

- \blacktriangleright All universal kernels are characteristic, but not vice versa.
- \blacktriangleright The empirical $\hat{\mu}_{\mathbb{P}}$ requires no parametric assumption about \mathbb{P} .
- It can be estimated consistently, i.e., with probability at least 1δ ,

$$
\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{X \sim \mathbb{P}}[k(X,X)]}{n}} + \sqrt{\frac{2\log{\frac{1}{\delta}}}{n}}.
$$

 \blacktriangleright A kernel mean embedding of distribution $\mathbb P$

$$
\boldsymbol{\mu}_{\mathbb{P}} := \int k(\cdot, \mathbf{x}) \, d\mathbb{P}(\mathbf{x}), \qquad \hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot).
$$

If k is characteristic, $\mu_{\mathbb{P}}$ captures all information about \mathbb{P} .

- \blacktriangleright All universal kernels are characteristic, but not vice versa.
- \blacktriangleright The empirical $\hat{\mu}_{\mathbb{P}}$ requires no parametric assumption about \mathbb{P} .
- It can be estimated consistently, i.e., with probability at least 1δ ,

$$
\|\hat{\mu}_{\mathbb{P}} - \mu_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{X \sim \mathbb{P}}[k(X,X)]}{n}} + \sqrt{\frac{2\log\frac{1}{\delta}}{n}}.
$$

If Given the embedding $\hat{\mu}$, it is possible to reconstruct the distribution or generate samples from it.

Learning from Distributions

 \equiv KM., Fukumizu, Dinuzzo, Schölkopf. NIPS 2012.

 \equiv KM., Fukumizu, Dinuzzo, Schölkopf. NIPS 2012.

Group Anomaly Detection

 \equiv KM. and Schölkopf, UAI 2013.

Learning from Distributions

 \equiv KM., Fukumizu, Dinuzzo, Schölkopf. NIPS 2012.

Group Anomaly Detection

 \equiv KM. and Schölkopf, UAI 2013.

Domain Generalization

 $\left| \equiv \right|$ KM., Fukumizu, Dinuzzo, Schölkopf. NIPS 2012.

Group Anomaly Detection

 \equiv KM. and Schölkopf, UAI 2013.

Domain Generalization

Cause-Effect Inference

 \equiv Lopez-Paz, KM. et al. JMLR 2015, ICML 2015.

Support Measure Machine (SMM)

KM, K. Fukumizu, F. Dinuzzo, and B. Schölkopf (NeurlPS2012)

Support Measure Machine (SMM)

KM, K. Fukumizu, F. Dinuzzo, and B. Schölkopf (NeurlPS2012)

 $\lambda \mapsto k(\cdot, \lambda) \qquad \qquad \delta_\mathsf{x} \mapsto \int k(\cdot, z) d \delta_\mathsf{x}(z) \quad \quad \mathbb{P} \mapsto \int k(\cdot, z) d \mathbb{P}(z)$

Training data: $(\mathbb{P}_1, y_1), (\mathbb{P}_2, y_2), \ldots, (\mathbb{P}_n, y_n) \sim \mathscr{P} \times \mathcal{Y}$

Theorem (Distributional representer theorem) Under technical assumptions on $\Omega : [0, +\infty) \to \mathbb{R}$, and a loss function $\ell: (\mathcal{P}\times\mathbb{R}^2)^m\rightarrow\mathbb{R}\cup\{+\infty\}$, any $f\in\mathcal{H}$ minimizing

$$
\ell(\mathbb{P}_1, y_1, \mathbb{E}_{\mathbb{P}_1}[f], \ldots, \mathbb{P}_m, y_m, \mathbb{E}_{\mathbb{P}_m}[f]) + \Omega(\|f\|_{\mathcal{H}})
$$

admits a representation of the form

$$
f=\sum_{i=1}^m \alpha_i \mathbb{E}_{x\sim \mathbb{P}_i}[k(x,\cdot)] = \sum_{i=1}^m \alpha_i \mu_{\mathbb{P}_i}.
$$

Supervised Learning on Point Clouds

Training set $(S_1, y_1), \ldots, (S_n, y_n)$ with $S_i = \{x_i^{(i)}\}$ $\{G_j^{(1)}\}\sim \mathbb{P}_i(X).$ Supervised Learning on Point Clouds

Training set $(S_1, y_1), \ldots, (S_n, y_n)$ with $S_i = \{x_i^{(i)}\}$ $\{G_j^{(1)}\}\sim \mathbb{P}_i(X).$

Lopez-Paz, KM., B. Schölkopf, I. Tolstikhin. JMLR 2015, ICML 2015.
Supervised Learning on Point Clouds

Training set $(S_1, y_1), \ldots, (S_n, y_n)$ with $S_i = \{x_i^{(i)}\}$ $\{G_j^{(1)}\}\sim \mathbb{P}_i(X).$

Lopez-Paz, KM., B. Schölkopf, I. Tolstikhin. JMLR 2015, ICML 2015.

Topological Data Analysis

G. Kusano, K. Fukumizu, and Y. Hiraoka. JMLR2018

Domain Generalization

Blanchard et al., NeurlPS2012; KM, D. Balduzzi, B. Schölkopf, ICML2013

 $\mathcal{K}((\mathbb{P}_i,\mathsf{x}),(\mathbb{P}_j,\tilde{\mathsf{x}}))=\mathsf{k}_1(\mathbb{P}_i,\mathbb{P}_j)\mathsf{k}_2(\mathsf{x},\tilde{\mathsf{x}})=\mathsf{k}_1(\boldsymbol{\mu}_{\mathbb{P}_i},\boldsymbol{\mu}_{\mathbb{P}_j})\mathsf{k}_2(\mathsf{x},\tilde{\mathsf{x}})$

 \triangleright Maximum mean discrepancy (MMD) corresponds to the RKHS distance between mean embeddings:

 $MMD^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{H}) = ||\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}||_{\mathcal{H}}^{2} = ||\mu_{\mathbb{P}}||_{\mathcal{H}} - 2\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\rangle_{\mathcal{H}} + ||\mu_{\mathbb{Q}}||_{\mathcal{H}}.$

 \triangleright Maximum mean discrepancy (MMD) corresponds to the RKHS distance between mean embeddings:

 $MMD^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{H}) = ||\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}||_{\mathcal{H}}^{2} = ||\mu_{\mathbb{P}}||_{\mathcal{H}} - 2\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\rangle_{\mathcal{H}} + ||\mu_{\mathbb{Q}}||_{\mathcal{H}}.$

 \triangleright MMD is an integral probability metric (IPM):

$$
\text{MMD}^2(\mathbb{P}, \mathbb{Q}, \mathcal{H}) := \sup_{h \in \mathcal{H}, \|h\| \leq 1} \left| \int h(x) \, d\mathbb{P}(x) - \int h(x) \, d\mathbb{Q}(x) \right|.
$$

 \triangleright Maximum mean discrepancy (MMD) corresponds to the RKHS distance between mean embeddings:

 $MMD^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{H}) = ||\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}||_{\mathcal{H}}^{2} = ||\mu_{\mathbb{P}}||_{\mathcal{H}} - 2\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\rangle_{\mathcal{H}} + ||\mu_{\mathbb{Q}}||_{\mathcal{H}}.$

 \triangleright MMD is an integral probability metric (IPM):

$$
\text{MMD}^2(\mathbb{P}, \mathbb{Q}, \mathcal{H}) := \sup_{h \in \mathcal{H}, \|h\| \leq 1} \left| \int h(x) \, d\mathbb{P}(x) - \int h(x) \, d\mathbb{Q}(x) \right|.
$$

If k is **characteristic**, then $\|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}} = 0$ if and only if $\mathbb{P} = \mathbb{Q}$.

 \triangleright Maximum mean discrepancy (MMD) corresponds to the RKHS distance between mean embeddings:

 $MMD^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{H}) = ||\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}||_{\mathcal{H}}^{2} = ||\mu_{\mathbb{P}}||_{\mathcal{H}} - 2\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\rangle_{\mathcal{H}} + ||\mu_{\mathbb{Q}}||_{\mathcal{H}}.$

 \triangleright MMD is an integral probability metric (IPM):

$$
\text{MMD}^{2}(\mathbb{P},\mathbb{Q},\mathcal{H}):=\sup_{h\in\mathcal{H},||h||\leq 1}\left|\int h(x)\,\mathrm{d}\mathbb{P}(x)-\int h(x)\,\mathrm{d}\mathbb{Q}(x)\right|.
$$

If k is characteristic, then $\|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}} = 0$ if and only if $\mathbb{P} = \mathbb{Q}$.

► Given $\{x_i\}_{i=1}^n \sim \mathbb{P}$ and $\{y_j\}_{j=1}^m \sim \mathbb{Q}$, the empirical MMD is

$$
\widehat{\text{MMD}}_{u}^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{H}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} k(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j \neq i}^{m} k(\mathbf{y}_{i}, \mathbf{y}_{j}) - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} k(\mathbf{x}_{i}, \mathbf{y}_{j}).
$$

Kernel Two-Sample Testing

Gretton et al., JMLR2012

 \mathbb{P} $\mathbb Q$ \mathbb{P} \overline{O}

Question: Given $\{x_i\}_{i=1}^n \sim \mathbb{P}$ and $\{y_j\}_{j=1}^n \sim \mathbb{Q}$, check if $\mathbb{P} = \mathbb{Q}$.

 $H_0 : \mathbb{P} = \mathbb{Q}, \quad H_1 : \mathbb{P} \neq \mathbb{Q}$

Kernel Two-Sample Testing

Gretton et al., JMLR2012

Question: Given $\{x_i\}_{i=1}^n \sim \mathbb{P}$ and $\{y_j\}_{j=1}^n \sim \mathbb{Q}$, check if $\mathbb{P} = \mathbb{Q}$.

$$
\mathcal{H}_0: \mathbb{P} = \mathbb{Q}, \quad \mathcal{H}_1: \mathbb{P} \neq \mathbb{Q}
$$

MMD test statistic:

$$
t^2 = \widehat{\text{MMD}}_u^2(\mathbb{P}, \mathbb{Q}, \mathcal{H})
$$

=
$$
\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} h((x_i, y_i), (x_j, y_j))
$$

where $h((x_i, y_i), (x_j, y_j)) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i)$.

Generative Adversarial Networks

Learn a deep generative model G via a minimax optimization

$$
\min_{G} \max_{D} \mathbb{E}_{x}[\log D(x)] + \mathbb{E}_{z}[\log(1 - D(G(z)))]
$$

where D is a discriminator and $z \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}).$

Generative Moment Matching Network

I The GAN aims to match two distributions $\mathbb{P}(X)$ and \mathbb{G}_{θ} .

Generative Moment Matching Network

- **IF** The GAN aims to match two distributions $\mathbb{P}(X)$ and \mathbb{G}_{θ} .
- **In Generative moment matching network (GMMN) proposed by** Dziugaite et al. (2015) and Li et al. (2015) considers

$$
\min_{\theta} \|\mu_X - \mu_{G_{\theta}(Z)}\|_{\mathcal{H}}^2 = \min_{\theta} \left\| \int \phi(X) \, d\mathbb{P}(X) - \int \phi(\tilde{X}) \, d\mathbb{G}_{\theta}(\tilde{X}) \right\|_{\mathcal{H}}^2
$$

$$
= \min_{\theta} \left\{ \sup_{h \in \mathcal{H}, ||h|| \le 1} \left| \int h \, d\mathbb{P} - \int h \, d\mathbb{G}_{\theta} \right| \right\}
$$

Generative Moment Matching Network

- **IF** The GAN aims to match two distributions $\mathbb{P}(X)$ and \mathbb{G}_{θ} .
- ▶ Generative moment matching network (GMMN) proposed by Dziugaite et al. (2015) and Li et al. (2015) considers

$$
\min_{\theta} \|\mu_X - \mu_{G_{\theta}(Z)}\|_{\mathcal{H}}^2 = \min_{\theta} \left\| \int \phi(X) \, d\mathbb{P}(X) - \int \phi(\tilde{X}) \, d\mathbb{G}_{\theta}(\tilde{X}) \right\|_{\mathcal{H}}^2
$$

$$
= \min_{\theta} \left\{ \sup_{h \in \mathcal{H}, ||h|| \le 1} \left| \int h \, d\mathbb{P} - \int h \, d\mathbb{G}_{\theta} \right| \right\}
$$

 \blacktriangleright Many tricks have been proposed to improve the GMMN:

- \triangleright Optimized kernels and feature extractors (Sutherland et al., 2017; Li et al., 2017a)
- ▶ Gradient regularization (Binkowski et al., 2018; Arbel et al., 2018)
- Repulsive loss (Wang et al., 2019)
- \triangleright Optimized witness points (Mehrjou et al., 2019)
- \blacktriangleright Etc.

[Kernel Methods](#page-3-0)

[From Points to Probability Measures](#page-31-0)

[Embedding of Marginal Distributions](#page-35-0)

[Embedding of Conditional Distributions](#page-84-0)

[Recent Development](#page-102-0)

Conditional Distribution $\mathbb{P}(Y | X)$

A collection of distributions $\mathcal{P}_Y := \{ \mathbb{P}(Y | X = x) : x \in \mathcal{X} \}.$

Conditional Distribution $\mathbb{P}(Y | X)$

A collection of distributions $\mathcal{P}_Y := \{ \mathbb{P}(Y | X = x) : x \in \mathcal{X} \}.$

► For each $x \in \mathcal{X}$, we can define an embedding of $\mathbb{P}(Y | X = x)$ as

$$
\mu_{Y|x} := \int_Y \varphi(Y) \, d\mathbb{P}(Y|X=x) = \mathbb{E}_{Y|x}[\varphi(Y)]
$$

where $\varphi : \mathcal{Y} \to \mathcal{G}$ is a feature map of Y.

Embedding of Conditional Distributions

The conditional mean embedding of $\mathbb{P}(Y | X)$ can be defined as

$$
\mathcal{U}_{Y|X} : \mathcal{H} \to \mathcal{G}, \qquad \mathcal{U}_{Y|X} := \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1}
$$

 \blacktriangleright To fully represent $\mathbb{P}(Y | X)$, we need to perform **conditioning** and conditional expectation.

- \blacktriangleright To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and conditional expectation.
- ▶ To represent $\mathbb{P}(Y | X = x)$ for $x \in \mathcal{X}$, it follows that

 $\mathbb{E}_{Y|X}[\varphi(Y) | X = x] = \mathcal{U}_{Y|X} k(x, \cdot) = \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1} k(x, \cdot) =: \mu_{Y|x}.$

- \blacktriangleright To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and conditional expectation.
- ▶ To represent $\mathbb{P}(Y | X = x)$ for $x \in \mathcal{X}$, it follows that

 $\mathbb{E}_{Y|X}[\varphi(Y) | X = x] = \mathcal{U}_{Y|X} k(x, \cdot) = \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1} k(x, \cdot) =: \mu_{Y|x}.$

It follows from the reproducing property of G that

$$
\mathbb{E}_{Y|x}[g(Y) | X = x] = \langle \mu_{Y|x}, g \rangle_{\mathcal{G}}, \quad \forall g \in \mathcal{G}.
$$

- \blacktriangleright To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and conditional expectation.
- ▶ To represent $\mathbb{P}(Y | X = x)$ for $x \in \mathcal{X}$, it follows that

 $\mathbb{E}_{Y|X}[\varphi(Y) | X = x] = \mathcal{U}_{Y|X} k(x, \cdot) = \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1} k(x, \cdot) =: \mu_{Y|x}.$

It follows from the reproducing property of G that

$$
\mathbb{E}_{Y|x}[g(Y) | X = x] = \langle \mu_{Y|x}, g \rangle_{\mathcal{G}}, \quad \forall g \in \mathcal{G}.
$$

▶ In an infinite RKHS, C_{XX}^{-1} does not exists. Hence, we often use

$$
\mathcal{U}_{Y|X} := \mathcal{C}_{YX}(\mathcal{C}_{XX} + \varepsilon \mathcal{I})^{-1}.
$$

- \blacktriangleright To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and conditional expectation.
- ▶ To represent $\mathbb{P}(Y | X = x)$ for $x \in \mathcal{X}$, it follows that

 $\mathbb{E}_{Y|X}[\varphi(Y) | X = x] = \mathcal{U}_{Y|X} k(x, \cdot) = \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1} k(x, \cdot) =: \mu_{Y|x}.$

It follows from the reproducing property of G that

$$
\mathbb{E}_{Y|x}[g(Y) | X = x] = \langle \mu_{Y|x}, g \rangle_{\mathcal{G}}, \quad \forall g \in \mathcal{G}.
$$

▶ In an infinite RKHS, C_{XX}^{-1} does not exists. Hence, we often use

$$
\mathcal{U}_{Y|X} := \mathcal{C}_{YX}(\mathcal{C}_{XX} + \varepsilon \mathcal{I})^{-1}.
$$

Conditional mean estimator

$$
\hat{\mu}_{Y|x} = \sum_{i=1}^n \beta_i(x)\varphi(y_i), \quad \beta(x) := (\mathbf{K} + n\epsilon I)^{-1}\mathbf{k}_x.
$$

KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the distributional treatment effect (DTE)

$$
\mathbb{P}_{Y^*_0}(\cdot)-\mathbb{P}_{Y^*_1}(\cdot)
$$

where Y_0^* and Y_1^* are **potential outcomes** of a treatment policy T .

KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the distributional treatment effect (DTE)

$$
\mathbb{P}_{Y^*_0}(\cdot)-\mathbb{P}_{Y^*_1}(\cdot)
$$

where Y_0^* and Y_1^* are **potential outcomes** of a treatment policy T .

▶ We can only observe either $\mathbb{P}_{Y_0^*}$ or $\mathbb{P}_{Y_1^*}.$

KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the distributional treatment effect (DTE)

$$
\mathbb{P}_{Y^*_0}(\cdot)-\mathbb{P}_{Y^*_1}(\cdot)
$$

where Y_0^* and Y_1^* are **potential outcomes** of a treatment policy T .

▶ We can only observe either $\mathbb{P}_{Y_0^*}$ or $\mathbb{P}_{Y_1^*}.$

 \blacktriangleright Counterfactual distribution

$$
\mathbb{P}_{Y\langle 0|1\rangle}(y)=\int \mathbb{P}_{Y_0|X_0}(y|x) \; \mathrm{d} \mathbb{P}_{X_1}(x).
$$

KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the distributional treatment effect (DTE)

$$
\mathbb{P}_{Y^*_0}(\cdot)-\mathbb{P}_{Y^*_1}(\cdot)
$$

where Y_0^* and Y_1^* are **potential outcomes** of a treatment policy T .

- ▶ We can only observe either $\mathbb{P}_{Y_0^*}$ or $\mathbb{P}_{Y_1^*}.$
- \blacktriangleright Counterfactual distribution

$$
\mathbb{P}_{Y\langle 0|1\rangle}(y)=\int \mathbb{P}_{Y_0|X_0}(y|x) \; \mathrm{d} \mathbb{P}_{X_1}(x).
$$

IF The counterfactual distribution $\mathbb{P}_{Y(0|1)}(y)$ can be estimated using the kernel mean embedding.

Quantum Mean Embedding

PHYSICAL REVIEW RESEARCH 1, 033159 (2019)

Quantum mean embedding of probability distributions

Jonas M. Kübler[®],^{*} Krikamol Muandet,[†] and Bernhard Schölkopf[‡] Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany

(Received 15 June 2019; published 9 December 2019)

The kernel mean embedding of probability distributions is commonly used in machine learning as an injective mapping from distributions to functions in an infinite-dimensional Hilbert space. It allows us, for example, to define a distance measure between probability distributions, called the maximum mean discrepancy. In this work, we propose to represent probability distributions in a pure quantum state of a system that is described by an infinite-dimensional Hilbert space and prove that the representation is unique if the corresponding kernel function is c_0 universal. This enables us to work with an explicit representation of the mean embedding, whereas classically one can only work implicitly with an infinite-dimensional Hilbert space through the use of the kernel trick. We show how this explicit representation can speed up methods that rely on inner products of mean embeddings and discuss the theoretical and experimental challenges that need to be solved in order to achieve these speedups.

 \blacktriangleright Many applications requires information in $\mathbb{P}(Y|X)$.

- \blacktriangleright Many applications requires information in $\mathbb{P}(Y | X)$.
- In Hilbert space embedding of $\mathbb{P}(Y|X)$ is **not a single element**, but an operator $\mathcal{U}_{Y|X}$ mapping from \mathcal{H} to \mathcal{G} :

$$
\mu_{Y|x} = U_{Y|X}k(x, \cdot) = C_{YX}C_{XX}^{-1}k(x, \cdot)
$$

$$
\langle \mu_{Y|x}, g \rangle_{\mathcal{G}} = \mathbb{E}_{Y|x}[g(Y)|X=x]
$$

- \blacktriangleright Many applications requires information in $\mathbb{P}(Y | X)$.
- In Hilbert space embedding of $\mathbb{P}(Y|X)$ is not a single element, but an operator $\mathcal{U}_{Y|X}$ mapping from \mathcal{H} to \mathcal{G} :

$$
\mu_{Y|x} = U_{Y|X}k(x, \cdot) = C_{YX}C_{XX}^{-1}k(x, \cdot)
$$

$$
\langle \mu_{Y|x}, g \rangle_{\mathcal{G}} = \mathbb{E}_{Y|x}[g(Y)|X = x]
$$

 \blacktriangleright The conditional mean operator

$$
\mathcal{U}_{Y|X} := \mathcal{C}_{YX}(\mathcal{C}_{XX} + \varepsilon \mathcal{I})^{-1}, \qquad \widehat{\mathcal{U}}_{Y|X} = \widehat{\mathcal{C}}_{YX}(\widehat{\mathcal{C}}_{XX} + \varepsilon \mathcal{I})^{-1}
$$

- \blacktriangleright Many applications requires information in $\mathbb{P}(Y | X)$.
- In Hilbert space embedding of $\mathbb{P}(Y|X)$ is **not a single element**, but an operator $\mathcal{U}_{Y|X}$ mapping from \mathcal{H} to \mathcal{G} :

$$
\mu_{Y|x} = U_{Y|X}k(x, \cdot) = C_{YX}C_{XX}^{-1}k(x, \cdot)
$$

$$
\langle \mu_{Y|x}, g \rangle_{\mathcal{G}} = \mathbb{E}_{Y|x}[g(Y)|X = x]
$$

 \blacktriangleright The conditional mean operator

$$
\mathcal{U}_{Y|X} := \mathcal{C}_{YX}(\mathcal{C}_{XX} + \varepsilon \mathcal{I})^{-1}, \qquad \widehat{\mathcal{U}}_{Y|X} = \widehat{\mathcal{C}}_{YX}(\widehat{\mathcal{C}}_{XX} + \varepsilon \mathcal{I})^{-1}
$$

 \blacktriangleright Probabilistic inference such as sum, product, and Bayes rules, can be performed via the embeddings.

[Kernel Methods](#page-3-0)

[From Points to Probability Measures](#page-31-0)

[Embedding of Marginal Distributions](#page-35-0)

[Embedding of Conditional Distributions](#page-84-0)

[Recent Development](#page-102-0)

Machine Learning in Economics

Recommendation Autonomous Car Healthcare

Finance Law Enforcement Public Policy

socioeconomic status

socioeconomic status

 \triangleright We aim to estimate a function f from a structural equation model

$$
Y = f(E) + \varepsilon, \qquad \mathbb{E}[\varepsilon | E] \neq 0.
$$

socioeconomic status

 \triangleright We aim to estimate a function f from a structural equation model

$$
Y = f(E) + \varepsilon, \qquad \mathbb{E}[\varepsilon | E] \neq 0.
$$

 \triangleright We have an **instrumental** variable *I* with property $\mathbb{E}[\varepsilon | I] = 0$, i.e.,

 $\mathbb{E}[Y - f(E) | I] = 0$

socioeconomic status

 \triangleright We aim to estimate a function f from a structural equation model

$$
Y = f(E) + \varepsilon, \qquad \mathbb{E}[\varepsilon | E] \neq 0.
$$

 \triangleright We have an **instrumental** variable *I* with property $\mathbb{E}[\varepsilon | I] = 0$, i.e.,

$$
\mathbb{E}[Y - f(E) | I] = 0
$$

Conditional moment restriction (CMR): $\mathbb{E}[\psi(Z, \theta) | X] = 0$.

$$
Z=(E,Y), X=I, \theta=f, \psi(Z;\theta)=Y-f(E).
$$
Conditional Moment Restriction (CMR)

Newey (1993), Ai and Chen (2003)

There exists a true parameter $\theta_0 \in \Theta$ that satisfies

$$
\mathbb{E}[\psi(Z;\theta_0) \,|\, X] = \mathbf{0}, \quad P_X - \text{a.s.},
$$

where $\psi: \mathcal{Z} \times \Theta \rightarrow \mathbb{R}^q$ is a $\boldsymbol{\mathsf{generalized}}$ residual function.

Conditional Moment Restriction (CMR) Newey (1993), Ai and Chen (2003)

There exists a true parameter $\theta_0 \in \Theta$ that satisfies

$$
\mathbb{E}[\psi(Z;\theta_0) \,|\, X] = \mathbf{0}, \quad P_X - \text{a.s.},
$$

where $\psi: \mathcal{Z} \times \Theta \rightarrow \mathbb{R}^q$ is a $\boldsymbol{\mathsf{generalized}}$ residual function.

 \blacktriangleright The function ψ is known and is problem-dependent, e.g.,

$$
\psi(Z; \theta) = Y - f(E), \quad Z = (Y, E), X = I, \theta = f.
$$

Conditional Moment Restriction (CMR) Newey (1993), Ai and Chen (2003)

There exists a true parameter $\theta_0 \in \Theta$ that satisfies

$$
\mathbb{E}[\psi(Z;\theta_0) \,|\, X] = \mathbf{0}, \quad P_X - \text{a.s.},
$$

where $\psi: \mathcal{Z} \times \Theta \rightarrow \mathbb{R}^q$ is a $\boldsymbol{\mathsf{generalized}}$ residual function.

 \blacktriangleright The function ψ is known and is problem-dependent, e.g.,

$$
\psi(Z;\theta)=Y-f(E),\quad Z=(Y,E),X=I,\theta=f.
$$

 \blacktriangleright The CMR implies unconditional moment restriction (UMR):

$$
\mathbb{E}[\psi(Z;\theta_0)^\top f(X)] = 0
$$

for any measurable vector-valued function $f:\mathcal{X}\rightarrow\mathbb{R}^q.$ The function $f(X)$ is often called an **instrument**.

Conditional Moment Restriction (CMR) Newey (1993), Ai and Chen (2003)

There exists a true parameter $\theta_0 \in \Theta$ that satisfies

$$
\mathbb{E}[\psi(Z;\theta_0) \,|\, X] = \mathbf{0}, \quad P_X - \text{a.s.},
$$

where $\psi: \mathcal{Z} \times \Theta \rightarrow \mathbb{R}^q$ is a $\boldsymbol{\mathsf{generalized}}$ residual function.

 \blacktriangleright The function ψ is known and is problem-dependent, e.g.,

$$
\psi(Z;\theta)=Y-f(E),\quad Z=(Y,E),X=I,\theta=f.
$$

 \blacktriangleright The CMR implies unconditional moment restriction (UMR):

$$
\mathbb{E}[\psi(Z;\theta_0)^\top f(X)] = 0
$$

for any measurable vector-valued function $f:\mathcal{X}\rightarrow\mathbb{R}^q.$ The function $f(X)$ is often called an **instrument**.

Given the instruments f_1, \ldots, f_m , one can use the **generalized** method of moment (GMM) to learn the parameter θ .

KM, W. Jitkrittum, J. Kübler, UAI2020

Let $\mathscr F$ be a space of instruments $f(x)$.

$$
\underbrace{\mathbb{E}[\psi(Z;\theta_0) \mid X] = \mathbf{0}}_{\text{CMR}} \quad \Leftrightarrow \quad \underbrace{\sup_{f \in \mathscr{F}} |\mathbb{E}[\psi(Z;\theta_0)^\top f(X)]| = 0}_{\text{MMR}(\mathscr{F},\theta_0)}
$$

KM, W. Jitkrittum, J. Kübler, UAI2020

Let $\mathscr F$ be a space of instruments $f(x)$.

$$
\underbrace{\mathbb{E}[\psi(Z;\theta_0) \mid X] = \mathbf{0}}_{\text{CMR}} \quad \Leftrightarrow \quad \underbrace{\sup_{f \in \mathscr{F}} \left| \mathbb{E}[\psi(Z;\theta_0)^\top f(X)] \right| = 0}_{\text{MMR}(\mathscr{F},\theta_0)}
$$

The equivalence above holds if $\mathscr F$ is a universal vector-valued RKHS.

KM, W. Jitkrittum, J. Kübler, UAI2020

Let $\mathscr F$ be a space of instruments $f(x)$.

$$
\underbrace{\mathbb{E}[\psi(Z;\theta_0) \mid X] = \mathbf{0}}_{\text{CMR}} \Leftrightarrow \underbrace{\sup_{f \in \mathscr{F}} \left| \mathbb{E}[\psi(Z;\theta_0)^\top f(X)] \right| = 0}_{\text{MMR}(\mathscr{F},\theta_0)}
$$

The equivalence above holds if $\mathscr F$ is a universal vector-valued RKHS. Let $\mu_{\theta} := K_X \psi(Z; \theta)$.

$$
\begin{array}{rcl}\n\mathsf{MMR}(\mathscr{F},\theta) & := & \sup_{f \in \mathscr{F}, \|f\| \le 1} \left| \mathbb{E} \left[\psi(Z;\theta)^\top f(X) \right] \right| \\
& = & \left\| \mathbb{E} [K_X \psi(Z;\theta)] \right\|_{\mathscr{F}} \\
& = & \|\mu_\theta\|_{\mathscr{F}}.\n\end{array}
$$

KM, W. Jitkrittum, J. Kübler, UAI2020

Let $\mathscr F$ be a space of instruments $f(x)$.

$$
\underbrace{\mathbb{E}[\psi(Z;\theta_0) \mid X] = \mathbf{0}}_{\text{CMR}} \quad \Leftrightarrow \quad \underbrace{\sup_{f \in \mathscr{F}} \left| \mathbb{E}[\psi(Z;\theta_0)^\top f(X)] \right| = 0}_{\text{MMR}(\mathscr{F},\theta_0)}
$$

 \blacktriangleright The equivalence above holds if $\mathscr F$ is a **universal** vector-valued RKHS. Let $\mu_{\theta} := K_X \psi(Z; \theta)$.

$$
\begin{array}{rcl}\n\text{MMR}(\mathscr{F}, \theta) & := & \sup_{f \in \mathscr{F}, \|f\| \le 1} \left| \mathbb{E} \left[\psi(Z; \theta)^{\top} f(X) \right] \right| \\
& = & \left\| \mathbb{E} [K_X \psi(Z; \theta)] \right\|_{\mathscr{F}} \\
& = & \|\mu_\theta\|_{\mathscr{F}}.\n\end{array}
$$

 \blacktriangleright MMR²(\mathscr{F}, θ) = $\mathbb{E}[\psi(Z; \theta)^\top K(X, X')\psi(Z'; \theta)].$

KM, W. Jitkrittum, J. Kübler, UAI2020

Parameter Estimation

Given observations $(x_i, z_i)_{i=1}^n$ from $\mathbb{P}(X, Z)$, we aim to estimate θ_0 by

$$
\hat{\theta} = \arg \min_{\theta \in \Theta} \widehat{MMR}^2(\mathscr{F}, \theta)
$$

=
$$
\arg \min_{\theta \in \Theta} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \psi(z_i; \theta)^{\top} K(x_i, x_j) \psi(z_j; \theta).
$$

KM, W. Jitkrittum, J. Kübler, UAI2020

Parameter Estimation

Given observations $(x_i, z_i)_{i=1}^n$ from $\mathbb{P}(X, Z)$, we aim to estimate θ_0 by

$$
\hat{\theta} = \arg \min_{\theta \in \Theta} \widehat{MMR}^2(\mathscr{F}, \theta)
$$

=
$$
\arg \min_{\theta \in \Theta} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \psi(z_i; \theta)^{\top} K(x_i, x_j) \psi(z_j; \theta).
$$

Hypothesis Testing

Given observations $(x_i, z_i)_{i=1}^n$ from $\mathbb{P}(X, Z)$ and the parameter estimate $\hat{\theta}$, we aim to test

$$
H_0: \widehat{\text{MMR}}^2(\mathscr{F}, \hat{\theta}) = 0, \qquad H_1: \widehat{\text{MMR}}^2(\mathscr{F}, \hat{\theta}) \neq 0.
$$

Conditional Moment Embedding

Figure: The conditional moments $\mathbb{E}[\psi(Z;\theta)|X]$ for different parameters θ are uniquely (P_X -almost surely) embedded into the RKHS.

Kernel Conditional Moment Test via Maximum Moment Restriction (UAI2020) Paper: <https://arxiv.org/abs/2002.09225> Code: <https://github.com/krikamol/kcm-test>

Future Direction

<krikamol@tuebingen.mpg.de><http://krikamol.org>

Contact: Website:

In Let H, G be RKHSes on X, Y with feature maps

 $\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).$

Exect H, G be RKHSes on X, Y with feature maps

$$
\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).
$$

Example 1 Let \mathcal{C}_{XX} and \mathcal{C}_{YX} be the **covariance operator** on X and cross-covariance operator from X to Y , i.e.,

$$
\mathcal{C}_{XX} = \int \phi(X) \otimes \phi(X) \, d\mathbb{P}(X),
$$

$$
\mathcal{C}_{YX} = \int \varphi(Y) \otimes \phi(X) \, d\mathbb{P}(Y,X)
$$

Exect H, G be RKHSes on X, Y with feature maps

$$
\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).
$$

Example 1 Let \mathcal{C}_{XX} and \mathcal{C}_{YX} be the **covariance operator** on X and cross-covariance operator from X to Y , i.e.,

$$
C_{XX} = \int \phi(X) \otimes \phi(X) \, d\mathbb{P}(X),
$$

$$
C_{YX} = \int \varphi(Y) \otimes \phi(X) \, d\mathbb{P}(Y,X)
$$

Alternatively, C_{YX} is a unique bounded operator satisfying

$$
\langle g, C_{YX}f\rangle_{\mathcal{G}}=\text{Cov}[g(Y), f(X)].
$$

Exect H, G be RKHSes on X, Y with feature maps

$$
\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).
$$

Example 1 Let \mathcal{C}_{XX} and \mathcal{C}_{YX} be the **covariance operator** on X and cross-covariance operator from X to Y , i.e.,

$$
C_{XX} = \int \phi(X) \otimes \phi(X) \, d\mathbb{P}(X),
$$

$$
C_{YX} = \int \varphi(Y) \otimes \phi(X) \, d\mathbb{P}(Y,X)
$$

Alternatively, C_{YX} is a unique bounded operator satisfying

$$
\langle g, C_{YX}f\rangle_{\mathcal{G}}=\text{Cov}[g(Y), f(X)].
$$

If $\mathbb{E}_{YX}[g(Y)|X = \cdot] \in \mathcal{H}$ for $g \in \mathcal{G}$, then

$$
\mathcal{C}_{XX} \mathbb{E}_{YX}[g(Y)|X = \cdot] = \mathcal{C}_{XY}g.
$$

Conditional Mean Estimation

Given a joint sample $(x_1, y_1), \ldots, (x_n, y_n)$ from $\mathbb{P}(X, Y)$, we have

$$
\widehat{C}_{XX} = \frac{1}{n} \sum_{i=1}^n \phi(x_i) \otimes \phi(x_i), \qquad \widehat{C}_{YX} = \frac{1}{n} \sum_{i=1}^n \varphi(y_i) \otimes \phi(x_i).
$$

Conditional Mean Estimation

Given a joint sample $(x_1, y_1), \ldots, (x_n, y_n)$ from $\mathbb{P}(X, Y)$, we have

$$
\widehat{C}_{XX} = \frac{1}{n} \sum_{i=1}^n \phi(x_i) \otimes \phi(x_i), \qquad \widehat{C}_{YX} = \frac{1}{n} \sum_{i=1}^n \varphi(y_i) \otimes \phi(x_i).
$$

▶ Then, $\mu_{Y|X}$ for some $x \in \mathcal{X}$ can be estimated as

$$
\hat{\mu}_{Y|x} = \hat{C}_{YX}(\hat{C}_{XX} + \varepsilon \mathcal{I})^{-1} k(x, \cdot) = \Phi(\mathbf{K} + n\varepsilon \mathbf{I}_n)^{-1} \mathbf{k}_x = \sum_{i=1}^n \beta_i \varphi(y_i),
$$

where $\varepsilon > 0$ is a regularization parameter and

 $\Phi = [\varphi(y_1),..,\varphi(y_n)], \quad {\bf K}_{ij} = k(x_i,x_j), \quad {\bf k_x} = [k(x_1,x),..,k(x_n,x)].$

Conditional Mean Estimation

Given a joint sample $(x_1, y_1), \ldots, (x_n, y_n)$ from $\mathbb{P}(X, Y)$, we have

$$
\widehat{C}_{XX} = \frac{1}{n} \sum_{i=1}^n \phi(x_i) \otimes \phi(x_i), \qquad \widehat{C}_{YX} = \frac{1}{n} \sum_{i=1}^n \varphi(y_i) \otimes \phi(x_i).
$$

▶ Then, $\mu_{Y|X}$ for some $x \in \mathcal{X}$ can be estimated as

$$
\hat{\mu}_{Y|x} = \hat{C}_{YX}(\hat{C}_{XX} + \varepsilon \mathcal{I})^{-1} k(x, \cdot) = \Phi(\mathbf{K} + n\varepsilon \mathbf{I}_n)^{-1} \mathbf{k}_x = \sum_{i=1}^n \beta_i \varphi(y_i),
$$

where $\varepsilon > 0$ is a regularization parameter and

 $\Phi = [\varphi(y_1),..,\varphi(y_n)], \quad {\bf K}_{ij} = k(x_i,x_j), \quad {\bf k_x} = [k(x_1,x),..,k(x_n,x)].$

 \triangleright Under some technical assumptions, $\hat{\mu}_{Y|x} \to \mu_{Y|x}$ as $n \to \infty$.

Kernel Sum Rule: $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$

 \triangleright By the law of total expectation,

$$
\mu_X = \mathbb{E}_X[\phi(X)] = \mathbb{E}_Y[\mathbb{E}_{X|Y}[\phi(X)|Y]]
$$

= $\mathbb{E}_Y[U_{X|Y}\varphi(Y)] = U_{X|Y}\mathbb{E}_Y[\varphi(Y)]$
= $U_{X|Y}\mu_Y$

Kernel Sum Rule: $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$

 \triangleright By the law of total expectation,

$$
\mu_X = \mathbb{E}_X[\phi(X)] = \mathbb{E}_Y[\mathbb{E}_{X|Y}[\phi(X)|Y]]
$$

= $\mathbb{E}_Y[U_{X|Y}\varphi(Y)] = U_{X|Y}\mathbb{E}_Y[\varphi(Y)]$
= $U_{X|Y}\mu_Y$

 \blacktriangleright Let $\hat{\mu}_Y = \sum_{i=1}^m \alpha_i \varphi(\tilde{y}_i)$ and $\widehat{\mathcal{U}}_{X|Y} = \widehat{\mathcal{C}}_{XY} \widehat{\mathcal{C}}_{YY}^{-1}$. Then, $\hat{\mu}_X = \hat{\mathcal{U}}_{X|Y}\hat{\mu}_Y = \hat{\mathcal{C}}_{XY}\hat{\mathcal{C}}_{YY}^{-1}\hat{\mu}_Y = \Upsilon(\mathsf{L} + n\lambda I)^{-1}\tilde{\mathsf{L}}\alpha.$ where $\bm{\alpha}=(\alpha_1,\ldots,\alpha_m)^\top$, $\bm{\mathsf{L}}_{ij}=$ $\mathsf{I}(y_i,y_j)$, and $\tilde{\bm{\mathsf{L}}}_{ij}=\mathsf{I}(y_i,\tilde{y}_j)$. Kernel Sum Rule: $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$

 \blacktriangleright By the law of total expectation,

$$
\mu_X = \mathbb{E}_X[\phi(X)] = \mathbb{E}_Y[\mathbb{E}_{X|Y}[\phi(X)|Y]]
$$

= $\mathbb{E}_Y[U_{X|Y}\varphi(Y)] = U_{X|Y}\mathbb{E}_Y[\varphi(Y)]$
= $U_{X|Y}\mu_Y$

 \blacktriangleright Let $\hat{\mu}_Y = \sum_{i=1}^m \alpha_i \varphi(\tilde{y}_i)$ and $\widehat{\mathcal{U}}_{X|Y} = \widehat{\mathcal{C}}_{XY} \widehat{\mathcal{C}}_{YY}^{-1}$. Then, $\hat{\mu}_X = \hat{\mathcal{U}}_{X|Y}\hat{\mu}_Y = \hat{\mathcal{C}}_{XY}\hat{\mathcal{C}}_{YY}^{-1}\hat{\mu}_Y = \Upsilon(\mathsf{L} + n\lambda I)^{-1}\tilde{\mathsf{L}}\alpha.$ where $\bm{\alpha}=(\alpha_1,\ldots,\alpha_m)^\top$, $\bm{\mathsf{L}}_{ij}=$ $\mathsf{I}(y_i,y_j)$, and $\tilde{\bm{\mathsf{L}}}_{ij}=\mathsf{I}(y_i,\tilde{y}_j)$. \blacktriangleright That is, we have

$$
\hat{\boldsymbol{\mu}}_{X} = \sum_{j=1}^{n} \beta_j \phi(x_j)
$$

with $\beta = (\mathsf{L} + n\lambda \mathsf{I})^{-1} \tilde{\mathsf{L}} \alpha$.

 \triangleright We can factorize $\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \varphi(Y)]$ as

 $\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y} \mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$ $\mathbb{E}_X [\mathbb{E}_{Y \mid X} [\varphi(Y) | X] \otimes \varphi(X)] = \mathcal{U}_{Y \mid X} \mathbb{E}_X [\varphi(X) \otimes \varphi(X)]$

⁵Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

 \triangleright We can factorize $\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \varphi(Y)]$ as

 $\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y} \mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$ $\mathbb{E}_X [\mathbb{E}_{Y \mid X} [\varphi(Y) | X] \otimes \phi(X)] = \mathcal{U}_{Y \mid X} \mathbb{E}_X [\phi(X) \otimes \phi(X)]$

 \blacktriangleright Let $\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]$ and $\mu_Y^{\otimes} = \mathbb{E}_Y[\varphi(Y) \otimes \varphi(Y)].$

⁵Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

• We can factorize
$$
\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \phi(Y)]
$$
 as

 $\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y} \mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$ $\mathbb{E}_X [\mathbb{E}_{Y | X} [\varphi(Y) | X] \otimes \varphi(X)] = \mathcal{U}_{Y | X} \mathbb{E}_X [\varphi(X) \otimes \varphi(X)]$

• Let
$$
\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]
$$
 and $\mu_Y^{\otimes} = \mathbb{E}_Y[\phi(Y) \otimes \phi(Y)].$

 \blacktriangleright Then, the product rule becomes

$$
\mu_{XY} = \mathcal{U}_{X|Y}\mu_Y^{\otimes} = \mathcal{U}_{Y|X}\mu_X^{\otimes}.
$$

⁵Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

• We can factorize
$$
\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \phi(Y)]
$$
 as

 $\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y} \mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$ $\mathbb{E}_X [\mathbb{E}_{Y \mid X} [\varphi(Y) | X] \otimes \varphi(X)] = \mathcal{U}_{Y \mid X} \mathbb{E}_X [\varphi(X) \otimes \varphi(X)]$

• Let
$$
\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]
$$
 and $\mu_Y^{\otimes} = \mathbb{E}_Y[\phi(Y) \otimes \phi(Y)].$

 \blacktriangleright Then, the product rule becomes

$$
\mu_{XY} = \mathcal{U}_{X|Y}\mu_Y^{\otimes} = \mathcal{U}_{Y|X}\mu_X^{\otimes}.
$$

Alternatively, we may write the above formulation as

$$
C_{XY} = U_{X|Y}C_{YY}
$$
 and $C_{YX} = U_{Y|X}C_{XX}$

⁵Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

• We can factorize
$$
\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \phi(Y)]
$$
 as

 $\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y} \mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$ $\mathbb{E}_X [\mathbb{E}_{Y \mid X} [\varphi(Y) | X] \otimes \phi(X)] = \mathcal{U}_{Y \mid X} \mathbb{E}_X [\phi(X) \otimes \phi(X)]$

• Let
$$
\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]
$$
 and $\mu_Y^{\otimes} = \mathbb{E}_Y[\phi(Y) \otimes \phi(Y)].$

 \blacktriangleright Then, the product rule becomes

$$
\mu_{XY} = \mathcal{U}_{X|Y}\mu_Y^{\otimes} = \mathcal{U}_{Y|X}\mu_X^{\otimes}.
$$

 \blacktriangleright Alternatively, we may write the above formulation as

$$
C_{XY} = U_{X|Y} C_{YY} \text{ and } C_{YX} = U_{Y|X} C_{XX}
$$

 \triangleright The kernel sum and product rules can be combined to obtain the kernel Bayes' rule. 5

⁵Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

Calibration of Computer Simulation

Kennedy and O'Hagan (2002); Kisamori et al., (AISTATS 2020)

Figure taken from Kisamori et al., (2020)

The computer simulator: $r(x, \theta)$, $\theta \in \Theta$. The posterior embedding: $\mu_{\Theta|r^*} := \int k_{\Theta}(\cdot, \theta) dP_{\pi}(\theta|r^*)$