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Classification Problem
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Question: How to generalize the idea of implicit feature map?
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https://xkcd.com/655/

Recipe for ML Problems

1. Collect a data set D = {x1, x2, . . . , xn}.
2. Specify or learn a feature map φ : X → H.

3. Apply the feature map Dφ = {φ(x1), φ(x2), . . . , φ(xn)}.
4. Solve the (easier) problem in the feature space H using Dφ.

https://xkcd.com/655/
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Representation Learning

Perceptron1: f (x) = w>x + b

Explicit Representation

...
Perceptron

f (x) = w>2 σ(w>1 x + b1) + b2

Implicit Representation

x k(x, ·)

f (x) = w>φ(x) + b

1Rosenblatt 1958; Minsky and Papert 1969
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Kernels

A function k : X ×X → R is called a kernel on X if there exists a Hilbert
space H and a map φ : X → H such that for all x, x′ ∈ X we have

k(x, x′) = 〈φ(x), φ(x′)〉H

We call φ a feature map and H a feature space associated with k.

Example

1. k(x, x′) = (x · x′)2 for x, x′ ∈ R2

I φ(x) = (x2
1 , x

2
2 ,
√

2x1x2)
I H = R3

2. k(x, x′) = (x · x′ + c)m, x, x′ ∈ Rd

I dim(H) =
(
d+m
m

)
3. k(x, x′) = exp

(
−γ‖x− x′‖2

2

)
I H = R∞

φ
x , x ′ φ(x), φ(x ′)

k(x , x ′)

〈·, ·〉
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Positive Definite Kernels

A function k : X × X → R is called positive definite if, for all n ∈ N,
α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X , we have

α>Kα =
n∑

i=1

n∑
j=1

αiαjk(xj , xi ) ≥ 0, K :=

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)


Equivalently, the Gram matrix K is positive definite.

Any explicit kernel is positive definite
For any kernel k(x , x ′) := 〈φ(x), φ(x ′)〉H,

n∑
i=1

n∑
j=1

αiαjk(xj , xi ) =

〈
n∑

i=1

αiφ(xi ),
n∑

j=1

αjφ(xj)

〉
H

≥ 0.

Positive definiteness is a necessary (and sufficient) condition.
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Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of real-valued functions on X .

1. The space H is called a reproducing kernel Hilbert space (RKHS)
over X if for all x ∈ X the Dirac functional δx : H → R defined by

δx(f ) := f (x), f ∈ H,

is continuous.

2. A function k : X × X → R is called a reproducing kernel of H if
k(·, x) ∈ H for all x ∈ X and the reproducing property

f (x) = 〈f , k(·, x)〉H

holds for all f ∈ H and all x ∈ X .

Aronszajn (1950)2: “There is a one-to-one correspondance between the
reproducing kernel k and the RKHS H”.

2N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337–404, 1950.
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RKHS as Feature Space

Reproducing kernels are kernels
Let H be a Hilbert space on X with a
reproducing kernel k . Then, H is an
RKHS and is also a feature space of k ,
where the feature map φ : X → H is given
by

φ(x) = k(·, x).

We call φ the canonical feature map.

φ
x , x ′ φ(x), φ(x ′)

k(x , x ′)

〈·, ·〉

Proof
We fix an x′ ∈ X and write f := k(·, x′). Then, for x ∈ X , the
reproducing property implies

〈φ(x′), φ(x)〉 = 〈k(·, x′), k(·, x)〉 = 〈f , k(·, x)〉 = f (x) = k(x, x′).
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RKHS as Feature Space

Universal kernels (Steinwart 2002)
A continuous kernel k on a compact metric space X is called universal if
the RKHS H of k is dense in C (X ), i.e., for every function g ∈ C (X )
and all ε > 0 there exist an f ∈ H such that

‖f − g‖∞ ≤ ε.

Universal approximation theorem (Cybenko 1989)
Given any ε > 0 and f ∈ C (X ), there exist

h(x) =
n∑

i=1

αiϕ(w>i x + bi )

such that |f (x)− h(x)| < ε for all x ∈ X .
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Quick Summary

I A positive definite kernel k(x , x ′) defines an implicit feature map:

k(x , x ′) = 〈φ(x), φ(x ′)〉H

I There exists a unique reproducing kernel Hilbert space (RKHS) H
of functions on X for which k is a reproducing kernel:

f (x) = 〈f , k(·, x)〉H, k(x , x ′) = 〈k(·, x), k(·, x ′)〉H.

I Implicit representation of data points:
I Support vector machine (SVM)
I Gaussian process (GP)
I Neural tangent kernel (NTK)

I Good references on kernel methods.
I Support vector machine (2008), Christmann and Steinwart.
I Gaussian process for ML (2005), Rasmussen and Williams.
I Learning with kernels (1998), Schölkopf and Smola.
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From Points to Probability Measures

Embedding of Marginal Distributions

Embedding of Conditional Distributions

Recent Development
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Probability Measures
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Embedding of Dirac Measures

Feature Space HInput Space X

x

y

k(x, ·)
k(y, ·)

f

x 7→ k(·, x) δx 7→
∫
k(·, z) dδx(z) = k(·, x)
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Kernel Methods

From Points to Probability Measures
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Embedding of Marginal Distributions

x

p(x) RKHS H

µP

µQ

P
Q

f

Probability measure
Let P be a probability measure defined on a measurable space (X ,Σ)
with a σ-algebra Σ.

Kernel mean embedding
Let P be a space of all probability measures P. A kernel mean
embedding is defined by

µ : P → H, P 7→
∫
k(·, x)dP(x).

Remark: The kernel k is Bochner integrable if it is bounded.
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Embedding of Marginal Distributions

x

p(x) RKHS H

µP

µQ

P
Q

f

I If EX∼P[
√
k(X ,X )] <∞, then for µP ∈ H and f ∈ H,

〈f , µP〉 = 〈f ,EX∼P[k(·,X )]〉 = EX∼P[〈f , k(·,X )〉] = EX∼P[f (X )].

I The kernel k is said to be characteristic if the map

P 7→ µP

is injective, i.e., ‖µP − µQ‖H = 0 if and only if P = Q.
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Interpretation of Kernel Mean Representation

What properties are captured by µP?

I k(x , x ′) = 〈x , x ′〉 the first moment of P
I k(x , x ′) = (〈x , x ′〉+ 1)p moments of P up to order p ∈ N
I k(x , x ′) is universal/characteristic all information of P

Moment-generating function
Consider k(x , x ′) = exp(〈x , x ′〉). Then, µP = EX∼P[e〈X ,·〉].

Characteristic function
If k(x , y) = ψ(x − y) where ψ is a positive definite function, then
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Characteristic Kernels

I All universal kernels are characteristic, but characteristic kernels
may not be universal.

I Important characterizations:
I Discrete kernel on discrete space
I Shift-invariant kernels on Rd whose Fourier transform has full support.
I Integrally strictly positive definite (ISPD) kernels
I Characteristic kernels on groups

I Examples of characteristic kernels:

Gaussian RBF kernel

k(x, x′) = exp

(
−‖x− x′‖2

2

2σ2

) Laplacian kernel

k(x, x′) = exp

(
−‖x− x′‖1

σ

)
I Kernel choice vs parametric assumption

I Parametric assumption is susceptible to model misspecification.
I But the choice of kernel matters in practice.
I We can optimize the kernel to maximize the performance of the

downstream tasks.
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Kernel Mean Estimation

I Given an i.i.d. sample x1, x2, . . . , xn from P, we can estimate µP by

µ̂P := 1
n

∑n
i=1 k(xi , ·) ∈ H, P̂ = 1

n

∑n
i=1 δxi .

I For each f ∈ H, we have EX∼P̂[f (X )] = 〈f , µ̂P〉.
I Consistency: with probability at least 1− δ,

‖µ̂P − µP‖H ≤ 2

√
EX∼P[k(X ,X )]

n
+

√
2 log 1

δ

n
.

I The rate Op(n−1/2) was shown to be minimax optimal.3

I Similar to James-Stein estimators, we can improve an estimation by
shrinkage estimators:4

µ̂α := αf ∗ + (1− α)µ̂P, f ∗ ∈ H.

3Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
4Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.
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Recovering Samples/Distributions

I An approximate pre-image problem

θ∗ = arg min
θ
‖µ̂− µPθ

‖2
H. µPθ

µ̂
Pθ

I The distribution Pθ is assumed to be in a certain class

Pθ(x) =
K∑

k=1

πkN (x : µk ,Σk),
K∑

k=1

πk = 1.

I Kernel herding generates deterministic pseudo-samples by greedily
minimizing the squared error

E2
T =

∥∥∥∥∥µP −
1

T

T∑
t=1

k(·, xt)

∥∥∥∥∥
2

H

.

I Negative autocorrelation: O(1/T ) rate of convergence.

I Deep generative models (see the following slides).
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Quick Summary

I A kernel mean embedding of distribution P

µP :=

∫
k(·, x)dP(x), µ̂P :=

1

n

n∑
i=1

k(xi , ·).

I If k is characteristic, µP captures all information about P.

I All universal kernels are characteristic, but not vice versa.

I The empirical µ̂P requires no parametric assumption about P.

I It can be estimated consistently, i.e., with probability at least 1− δ,

‖µ̂P − µP‖H ≤ 2

√
EX∼P[k(X ,X )]

n
+

√
2 log 1

δ

n
.

I Given the embedding µ̂, it is possible to reconstruct the distribution
or generate samples from it.
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Application: High-Level Generalization

Learning from Distributions

q KM., Fukumizu, Dinuzzo,

Schölkopf. NIPS 2012.

Group Anomaly Detection

D
ist

rib
utio

n sp
ac

e

In
put s

pac
e

q KM. and Schölkopf, UAI 2013.

Domain Generalization

training data unseen test data

P2
XYP1

XY

P

PN
XY

...

(Xk, Yk) ... Xk

PX

(Xk, Yk) (Xk, Yk)

k = 1, . . . , nk = 1, . . . , nNk = 1, . . . , n2k = 1, . . . , n1

q KM. et al. ICML 2013;

Zhang, KM. et al. ICML 2013

Cause-Effect Inference

X Y

q Lopez-Paz, KM. et al.

JMLR 2015, ICML 2015.
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Support Measure Machine (SMM)
KM, K. Fukumizu, F. Dinuzzo, and B. Schölkopf (NeurIPS2012)

x 7→ k(·, x) δx 7→
∫
k(·, z)dδx(z) P 7→

∫
k(·, z)dP(z)

Training data: (P1, y1), (P2, y2), . . . , (Pn, yn) ∼P × Y

Theorem (Distributional representer theorem)
Under technical assumptions on Ω : [0,+∞)→ R, and a loss function
` : (P × R2)m → R ∪ {+∞}, any f ∈ H minimizing

` (P1, y1,EP1 [f ], . . . ,Pm, ym,EPm [f ]) + Ω (‖f ‖H)

admits a representation of the form

f =
m∑
i=1

αiEx∼Pi [k(x , ·)] =
m∑
i=1

αiµPi .
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Supervised Learning on Point Clouds

Training set (S1, y1), . . . , (Sn, yn) with Si = {x (i)
j } ∼ Pi (X ).

Causal Prediction

X → Y X ← Y X → Y ?

Lopez-Paz, KM., B. Schölkopf, I. Tolstikhin. JMLR 2015, ICML 2015.

Topological Data Analysis

G. Kusano, K. Fukumizu, and Y. Hiraoka. JMLR2018
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Domain Generalization
Blanchard et al., NeurIPS2012; KM, D. Balduzzi, B. Schölkopf, ICML2013

training data unseen test data

P2
XYP1

XY

P

PN
XY

...

(Xk, Yk) ... Xk

PX

(Xk, Yk) (Xk, Yk)

k = 1, . . . , nk = 1, . . . , nNk = 1, . . . , n2k = 1, . . . , n1

K ((Pi , x), (Pj , x̃)) = k1(Pi ,Pj)k2(x , x̃) = k1(µPi ,µPj )k2(x , x̃)
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Comparing Distributions

I Maximum mean discrepancy (MMD) corresponds to the RKHS
distance between mean embeddings:

MMD2(P,Q,H) = ‖µP − µQ‖2
H = ‖µP‖H − 2〈µP, µQ〉H + ‖µQ‖H.

I MMD is an integral probability metric (IPM):

MMD2(P,Q,H) := sup
h∈H,‖h‖≤1

∣∣∣∣∫ h(x)dP(x)−
∫

h(x)dQ(x)

∣∣∣∣ .
I If k is characteristic, then ‖µP − µQ‖H = 0 if and only if P = Q.
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Kernel Two-Sample Testing
Gretton et al., JMLR2012

P
Q

P
Q

Question: Given {xi}ni=1 ∼ P and {yj}nj=1 ∼ Q, check if P = Q.

H0 : P = Q, H1 : P 6= Q

I MMD test statistic:

t2 = M̂MD
2

u(P,Q,H)

=
1

n(n − 1)

∑
1≤i 6=j≤n

h((xi , yi ), (xj , yj))

where h((xi , yi ), (xj , yj)) = k(xi , xj) + k(yi , yj)− k(xi , yj)− k(xj , yi ).
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Generative Adversarial Networks

Learn a deep generative model G via a minimax optimization

min
G

max
D

Ex [logD(x)] + Ez [log(1− D(G (z)))]

where D is a discriminator and z ∼ N (0, σ2I).

random noise z

Gθ(z)

Generator Gθ

real or synthetic?

x or Gθ(z)

Discriminator Dφ

•
•
•••••••

••••
×
×
× ×
××
×××
×××
×

real data
{xi} synthetic data

{Gθ(zi )}

∥∥µ̂X − µ̂Gθ(Z)

∥∥
H is zero?

MMD Test
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Generative Moment Matching Network

I The GAN aims to match two distributions P(X ) and Gθ.

I Generative moment matching network (GMMN) proposed by
Dziugaite et al. (2015) and Li et al. (2015) considers

min
θ

∥∥µX − µGθ(Z)

∥∥2

H = min
θ

∥∥∥∥∫ φ(X )dP(X )−
∫
φ(X̃ )dGθ(X̃ )

∥∥∥∥2

H

= min
θ

{
sup

h∈H,‖h‖≤1

∣∣∣∣∫ h dP−
∫

h dGθ

∣∣∣∣
}

I Many tricks have been proposed to improve the GMMN:
I Optimized kernels and feature extractors

(Sutherland et al., 2017; Li et al., 2017a)
I Gradient regularization (Binkowski et al., 2018; Arbel et al., 2018)
I Repulsive loss (Wang et al., 2019)
I Optimized witness points (Mehrjou et al., 2019)
I Etc.
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Kernel Methods

From Points to Probability Measures

Embedding of Marginal Distributions

Embedding of Conditional Distributions

Recent Development
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Conditional Distribution P(Y |X )

X

Y

A collection of distributions PY := {P(Y |X = x) : x ∈ X}.

I For each x ∈ X , we can define an embedding of P(Y |X = x) as

µY |x :=

∫
Y

ϕ(Y ) dP(Y |X = x) = EY |x [ϕ(Y )]

where ϕ : Y → G is a feature map of Y .
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Embedding of Conditional Distributions

X

Y

H G
CYXC−1

XXk(x , ·)

µY |X=xk(x , ·) CYXC−1
XX

y

p(y |x)

P(Y |X = x)

The conditional mean embedding of P(Y |X ) can be defined as

UY |X : H → G, UY |X := CYXC−1
XX
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Conditional Mean Embedding

I To fully represent P(Y |X ), we need to perform conditioning and
conditional expectation.

I To represent P(Y |X = x) for x ∈ X , it follows that

EY |x [ϕ(Y ) |X = x ] = UY |Xk(x , ·) = CYXC−1
XXk(x , ·) =: µY |x .

I It follows from the reproducing property of G that

EY |x [g(Y ) |X = x ] = 〈µY |x , g〉G , ∀g ∈ G.

I In an infinite RKHS, C−1
XX does not exists. Hence, we often use

UY |X := CYX (CXX + εI)−1.

I Conditional mean estimator

µ̂Y |x =
n∑

i=1

βi (x)ϕ(yi ), β(x) := (K + nεI )−1kx .
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Counterfactual Mean Embedding
KM, Kanagawa, Saengkyongam, Marukatat, JMLR2020 (Accepted)

In economics, social science, and public policy, we need to evaluate the
distributional treatment effect (DTE)

PY ∗
0

(·)− PY ∗
1

(·)

where Y ∗0 and Y ∗1 are potential outcomes of a treatment policy T .

I We can only observe either PY ∗
0

or PY ∗
1

.

I Counterfactual distribution

PY 〈0|1〉(y) =

∫
PY0|X0

(y |x) dPX1 (x).

I The counterfactual distribution PY 〈0|1〉(y) can be estimated using the
kernel mean embedding.
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Quantum Mean Embedding
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Quick Summary

I Many applications requires information in P(Y |X ).

I Hilbert space embedding of P(Y |X ) is not a single element, but an
operator UY |X mapping from H to G:

µY |x = UY |Xk(x , ·) = CYXC−1
XXk(x , ·)

〈µY |x , g〉G = EY |x [g(Y ) |X = x ]

I The conditional mean operator

UY |X := CYX (CXX + εI)−1, ÛY |X = ĈYX (ĈXX + εI)−1

I Probabilistic inference such as sum, product, and Bayes rules, can
be performed via the embeddings.
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Kernel Methods

From Points to Probability Measures

Embedding of Marginal Distributions

Embedding of Conditional Distributions

Recent Development
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Machine Learning in Economics

Recommendation Autonomous Car Healthcare

Finance Law Enforcement Public Policy
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Instrumental Variable Regression

S

YEI

educationseason of birth income

socioeconomic status

I We aim to estimate a function f from a structural equation model

Y = f (E ) + ε, E[ε |E ] 6= 0.

I We have an instrumental variable I with property E[ε | I ] = 0, i.e.,

E[Y − f (E ) | I ] = 0

I Conditional moment restriction (CMR): E[ψ(Z , θ) |X ] = 0.

Z = (E ,Y ), X = I , θ = f , ψ(Z ; θ) = Y − f (E ).
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Conditional Moment Restriction (CMR)
Newey (1993), Ai and Chen (2003)

There exists a true parameter θ0 ∈ Θ that satisfies

E[ψ(Z ; θ0) |X ] = 0, PX − a.s.,

where ψ : Z ×Θ→ Rq is a generalized residual function.

I The function ψ is known and is problem-dependent, e.g.,

ψ(Z ; θ) = Y − f (E ), Z = (Y ,E ),X = I , θ = f .

I The CMR implies unconditional moment restriction (UMR):

E[ψ(Z ; θ0)>f (X )] = 0

for any measurable vector-valued function f : X → Rq. The function
f (X ) is often called an instrument.

I Given the instruments f1, . . . , fm, one can use the generalized
method of moment (GMM) to learn the parameter θ.
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Maximum Moment Restriction (MMR)
KM, W. Jitkrittum, J. Kübler, UAI2020

Let F be a space of instruments f (x).

E[ψ(Z ; θ0) |X ] = 0︸ ︷︷ ︸
CMR

⇔ sup
f∈F

∣∣E[ψ(Z ; θ0)>f (X )]
∣∣ = 0︸ ︷︷ ︸

MMR(F ,θ0)

I The equivalence above holds if F is a universal vector-valued RKHS.

I Let µθ := KXψ(Z ; θ).

MMR(F , θ) := sup
f∈F ,‖f ‖≤1

∣∣E [ψ(Z ; θ)>f (X )
]∣∣

= ‖E[KXψ(Z ; θ)]‖F
= ‖µθ‖F .

I MMR2(F , θ) = E[ψ(Z ; θ)>K (X ,X ′)ψ(Z ′; θ)].
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Maximum Moment Restriction (MMR)
KM, W. Jitkrittum, J. Kübler, UAI2020

Let F be a space of instruments f (x).

E[ψ(Z ; θ0) |X ] = 0︸ ︷︷ ︸
CMR

⇔ sup
f∈F
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Maximum Moment Restriction (MMR)
KM, W. Jitkrittum, J. Kübler, UAI2020

Parameter Estimation

Given observations (xi , zi )
n
i=1 from P(X ,Z ), we aim to estimate θ0 by

θ̂ = arg min
θ∈Θ

M̂MR
2
(F , θ)

= arg min
θ∈Θ

1

n(n − 1)

∑
1≤i 6=j≤n

ψ(zi ; θ)>K (xi , xj)ψ(zj ; θ).

Hypothesis Testing

Given observations (xi , zi )
n
i=1 from P(X ,Z ) and the parameter estimate

θ̂, we aim to test

H0 : M̂MR
2
(F , θ̂) = 0, H1 : M̂MR

2
(F , θ̂) 6= 0.
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Conditional Moment Embedding

PX
θ2

θ1

θ0

E[ψ(Z ; θ)|X ]

µθ0

µθ1

µθ2

RKHS F

Figure: The conditional moments E[ψ(Z ; θ)|X ] for different parameters θ are
uniquely (PX -almost surely) embedded into the RKHS.

Kernel Conditional Moment Test via Maximum Moment
Restriction (UAI2020)
Paper: https://arxiv.org/abs/2002.09225

Code: https://github.com/krikamol/kcm-test

https://arxiv.org/abs/2002.09225
https://github.com/krikamol/kcm-test
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Future Direction

Contact: Website:
krikamol@tuebingen.mpg.de http://krikamol.org

krikamol@tuebingen.mpg.de
http://krikamol.org
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Covariance Operators
I Let H,G be RKHSes on X ,Y with feature maps

φ(x) = k(x , ·), ϕ(y) = `(y , ·).

I Let CXX and CYX be the covariance operator on X and
cross-covariance operator from X to Y , i.e.,

CXX =

∫
φ(X )⊗ φ(X ) dP(X ),

CYX =

∫
ϕ(Y )⊗ φ(X ) dP(Y ,X )

I Alternatively, CYX is a unique bounded operator satisfying

〈g , CYX f 〉G = Cov[g(Y ), f (X )].

I If EYX [g(Y )|X = ·] ∈ H for g ∈ G, then

CXXEYX [g(Y )|X = ·] = CXY g .
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Conditional Mean Estimation

I Given a joint sample (x1, y1), . . . , (xn, yn) from P(X ,Y ), we have

ĈXX =
1

n

n∑
i=1

φ(xi )⊗ φ(xi ), ĈYX =
1

n

n∑
i=1

ϕ(yi )⊗ φ(xi ).

I Then, µY |x for some x ∈ X can be estimated as

µ̂Y |x = ĈYX (ĈXX + εI)−1k(x , ·) = Φ(K + nεIn)−1kx =
n∑

i=1

βiϕ(yi ),

where ε > 0 is a regularization parameter and

Φ = [ϕ(y1), .., ϕ(yn)], Kij = k(xi , xj), kx = [k(x1, x), .., k(xn, x)].

I Under some technical assumptions, µ̂Y |x → µY |x as n→∞.
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Kernel Sum Rule: P(X ) =
∑

Y P(X ,Y )

I By the law of total expectation,

µX = EX [φ(X )] = EY [EX |Y [φ(X )|Y ]]

= EY [UX |Yϕ(Y )] = UX |YEY [ϕ(Y )]

= UX |YµY

I Let µ̂Y =
∑m

i=1 αiϕ(ỹi ) and ÛX |Y = ĈXY Ĉ−1
YY . Then,

µ̂X = ÛX |Y µ̂Y = ĈXY Ĉ−1
YY µ̂Y = Υ(L + nλI )−1L̃α.

where α = (α1, . . . , αm)>, Lij = l(yi , yj), and L̃ij = l(yi , ỹj).

I That is, we have

µ̂X =
∑n

j=1 βjφ(xj)

with β = (L + nλI)−1L̃α.
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Kernel Product Rule: P(X ,Y ) = P(Y |X )P(X )

I We can factorize µXY = EXY [φ(X )⊗ ϕ(Y )] as

EY [EX |Y [φ(X )|Y ]⊗ ϕ(Y )] = UX |YEY [ϕ(Y )⊗ ϕ(Y )]

EX [EY |X [ϕ(Y )|X ]⊗ φ(X )] = UY |XEX [φ(X )⊗ φ(X )]

I Let µ⊗X = EX [φ(X )⊗ φ(X )] and µ⊗Y = EY [ϕ(Y )⊗ ϕ(Y )].

I Then, the product rule becomes

µXY = UX |Yµ⊗Y = UY |Xµ⊗X .

I Alternatively, we may write the above formulation as

CXY = UX |Y CYY and CYX = UY |XCXX

I The kernel sum and product rules can be combined to obtain the
kernel Bayes’ rule.5

5Fukumizu et al. Kernel Bayes’ Rule. JMLR. 2013
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Calibration of Computer Simulation
Kennedy and O’Hagan (2002); Kisamori et al., (AISTATS 2020)

Figure taken from Kisamori et al., (2020)

The computer simulator: r(x , θ), θ ∈ Θ.
The posterior embedding: µΘ|r∗ :=

∫
kΘ(·, θ) dPπ(θ|r∗)
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