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Applications of geometric deep learning
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Prototypical non-Euclidean objects

Manifolds Graphs
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Domain structure vs Data on a domain

only data only structure
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Fixed vs different domain

Social network
(fixed graph)
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Fixed vs different domain

Social network
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3D shapes
(different manifolds)
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Geometric learning 6= Manifold learning

In manifold learning, we seek for a (possibly high-dimensional) manifold
that justifies a given set of data points:

In geometric deep learning, each data point has a known geometric
structure.
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Multi-view CNNs
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CNN1
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CNN1

CNN1

CNN1

Represent 3D object as a collection of range images

CNN1: Extract image features (parameters are shared across views)

Element-wise max pooling across all views

CNN2: Produce shape descriptors + final prediction

Su et al, “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015
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Multi-view CNNs
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Represent 3D object as a collection of range images

CNN1: Extract image features (parameters are shared across views)

Element-wise max pooling across all views

CNN2: Produce shape descriptors + final prediction

Su et al, “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015
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Applications of Multi-view CNNs

3D shape classification and
retrieval

Pre-trained on ImageNet
Fine-tuned on 2D views

Sketch classification

Mimic views by jittering

Sketch-based shape retrieval

Render views with hand-drawn
style (edge maps)

classify
=⇒ “chair”

classify
=⇒ “chair”

retrieve
=⇒

Su et al, “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, 2015
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3D ShapeNets

Volumetric representation (shape =
binary voxels on 3D grid)

3D convolutional network

Convolutional deep belief network

Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes” 2015
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Learned features: 3D primitives

Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes” 2015
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Challenges of geometric deep learning

Extrinsic Intrinsic

How to define convolution?

How to do pooling?

How to work fast?
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Extrinsic vs Intrinsic

Extrinsic Intrinsic
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Prototypical non-Euclidean objects

Manifolds Graphs
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Discrete manifolds

Nearest neighbor graph Triangular mesh

Vertices V = {1, . . . , n}

Edges E ⊆ V × V

Vertices V = {1, . . . , n}

Edges E ⊆ V × V

Faces F = {(i, j, k) ∈ V × V × V :
(i, j), (j, k), (k, i) ∈ E}

Manifold mesh = each edge is shared
by 2 faces + each vertex has 1 loop
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Local ambiguity

Unlike images, there is no canonical ordering of the domain points.

i
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Non-Euclidean convolution?

x

Euclidean

x

Non-Euclidean
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Non-Euclidean convolution?
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Non-Euclidean convolution?

Image

?

Graph
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Global parametrization

Map the input mesh to some parametric domain (e.g. 2D plane) where
operations can be defined more easily.

Can use Euclidean techniques in the embedding space

Provides invariance to certain transformations

Parametrization may be non-unique

The map can introduce distortion

Sinha et al, “Deep learning 3d shape surfaces using geometry images”, 2016
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Convolution on surfaces

Is translation-invariant convolution on surfaces possible?

Maron et al, “Convolutional Neural Networks on Surfaces via Seamless Toric Covers”,
SIGGRAPH 2017
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Convolution on surfaces

Is translation-invariant convolution on surfaces possible?

Not in general due to singularities in the translation field (Poincaré-Hopf
or “hairy ball” theorem):

Maron et al, “Convolutional Neural Networks on Surfaces via Seamless Toric Covers”,
SIGGRAPH 2017
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Convolution on surfaces

Is translation-invariant convolution on surfaces possible?

The torus is the only closed orientable surface admitting a translational
group.

Maron et al, “Convolutional Neural Networks on Surfaces via Seamless Toric Covers”,
SIGGRAPH 2017



Convolution on surfaces

Video by Ajeet Gary, 2019
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Spatial convolution on meshes

Local system of coordinates uij
around i (e.g. geodesic polar)

Local weights w(uij), e.g.
Gaussians with learnable µ,Σ:

w = exp
(
−(uij − µ)>Σ−1(uij − µ)

)
Spatial convolution of feature f
with filter g:

Represent the input f as above
⇒ f

Represent the learnable filter g
as above ⇒ g

Sum up the element-wise
products ⇒ f>g

i

j

Monti et al, “Geometric deep learning on graphs and manifolds using mixture model
CNNs”, CVPR 2016
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Local weighting kernels

Monti et al, “Geometric deep learning on graphs and manifolds using mixture model
CNNs”, CVPR 2016
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Coffee break (10min?)
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Spectral convolution on meshes

Laplacian operator ∆ acting
locally on the neighborhood of i:

(∆x)i =
∑
j

wij(xj − xi)

Eigenvectors of the Laplacian
∆ = ΦΛΦ> are a generalization
of the Fourier transform:

x̂ = Φ>x

Spectral convolution

x ? y = Φ

 ŷ1
. . .

ŷn


︸ ︷︷ ︸

Ŷ

x̂

i

j
wij

Bruna et al, “Spectral Networks and Locally Connected Networks on Graphs”, 2014
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Ŷ

x̂

i

j
wij

Bruna et al, “Spectral Networks and Locally Connected Networks on Graphs”, 2014



25/47

Spectral convolution on meshes

Laplacian operator ∆ acting
locally on the neighborhood of i:

(∆x)i =
∑
j

wij(xj − xi)

Eigenvectors of the Laplacian
∆ = ΦΛΦ> are a generalization
of the Fourier transform:

x̂ = Φ>x

Spectral convolution

x ? y = Φ

 ŷ1
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Laplacian eigenfunctions: Euclidean

−π 0 +π

−1

0

+1

First eigenfunctions of 1D Euclidean Laplacian = standard Fourier basis
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Laplacian eigenfunctions: manifold

φ1 φ2 φ3 φ4

First eigenfunctions of a manifold Laplacian
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Laplacian eigenfunctions: graph

φ1 φ2 φ3 φ4

First eigenfunctions of a graph Laplacian
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Fourier analysis: Euclidean space

A function f : [−π, π]→ R can be written as Fourier series

f(x) =
∑
k≥0

1

2π

∫ π

−π
f(x′)e−ikx

′
dx′

︸ ︷︷ ︸
f̂k=〈f,eikx〉L2([−π,π])

eikx

α1 α2 α3= + + + . . .

Fourier basis = Laplacian eigenfunctions: − d2

dx2 e
ikx = k2eikx
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Fourier analysis: non-Euclidean space

A function f : X → R can be written as Fourier series

f(x) =
∑
k≥1

∫
X
f(x′)φk(x′)dx′︸ ︷︷ ︸
f̂k=〈f,φk〉L2(X)

φk(x)

= α1 + α2 + α3 + . . .

f φ1 φ2 φ3

Fourier basis = Laplacian eigenfunctions: ∆φk(x) = λkφk(x)
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Convolution theorem

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Convolution theorem: Fourier transform diagonalizes the convolution
operator ⇒ convolution can be computed in the Fourier domain as:

(̂f ? g) = f̂ · ĝ
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Convolution theorem

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 . . . . . . gn
gn g1 g2 . . . gn−1
...

...
. . .

. . .
...

g3 g4 . . . g1 g2
g2 g3 . . . . . . g1



︸ ︷︷ ︸

 f1
...
fn



=
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 ĝ1
. . .

ĝn
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Spectral convolution

Generalized convolution of f, g ∈ L2(X ) can be defined by analogy

f ? g =
∑
k≥1

〈f, φk〉L2(X )〈g, φk〉L2(X )

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transformIn matrix-vector notation
f ? g =

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . , φn
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Basis dependence

Function x
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Basis dependence

‘Edge detecting’ spectral filter ΦŶΦ>x
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Basis dependence

Same spectral filter, different basis ΨŶΨ>x
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Spectral convolution on meshes

Laplacian operator ∆ acting
locally on the neighborhood of i:

(∆x)i =
∑
j

wij(xj − xi)
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Spectral convolution on meshes

Laplacian operator ∆ acting
locally on the neighborhood of i:

(∆x)i =
∑
j

wij(xj − xi)

Eigenvectors of the Laplacian
∆ = ΦΛΦ> are a generalization
of the Fourier transform:

x̂ = Φ>x

Spectral convolution defined as a
filter applied on the Lapacian:

X′ = Φ τ(Λ) Φ>X

i

j
wij
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Locality and smoothness

In the Euclidean setting (by Parseval’s identity), the following holds:

∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Henaff et al, “Deep Convolutional Networks on Graph-Structured Data”, 2015
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∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function τ(λ).

Application of the parametric filter with learnable parameters α

τα(∆)f = Φ

 τα(λ1)
. . .

τα(λn)

 Φ>f

Henaff et al, “Deep Convolutional Networks on Graph-Structured Data”, 2015
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Locality and smoothness

0 λ500

−1

+1

frequency

τ
(λ

)

Non-smooth spectral filter (delocalized in space)
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Locality and smoothness

0 λ500

−1

+1

frequency

τ
(λ
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Smooth spectral filter (localized in space)
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Spectral graph CNN with smooth spectral filters

Consider a linear combination of smooth kernel functions
β1(λ), . . . , βr(λ):

τα(λ) =

r∑
j=1

αjβj(λ)

= (Bα)k

where α = (α1, . . . , αr)
> is the vector of filter parameters.

O(1) parameters per layer.

Henaff et al, “Deep Convolutional Networks on Graph-Structured Data”, 2015
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Spectral graph CNN with smooth spectral filters

Consider a linear combination of smooth kernel functions
β1(λ), . . . , βr(λ):

W = Diag(Bα)

where α = (α1, . . . , αr)
> is the vector of filter parameters.

O(1) parameters per layer.

Henaff et al, “Deep Convolutional Networks on Graph-Structured Data”, 2015
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Application: Protein-Protein Interaction

Designing protein binder for the PD-L1 protein target

Gainza et al, “Deciphering interaction fingerprints from protein molecular surfaces
using geometric deep learning”, Nature Methods 2020
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Molecule property prediction

Input molecule

Density Functional Theory

Graph Neural Network

Predicted
properties

U0, H, G
ω1, ∆ε

〈R2〉, µ, α

∼ 103 sec

∼ 10−2 sec

Duvenaud et al, “Convolutional Networks on Graphs for Learning Molecular
Fingerprints”, NIPS 2015; Gomez-Bombarelli et al, “Automatic chemical design using
a data-driven continuous representation of molecules”, ACS Cent. Sci. 2018
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Generative models

En
co

de
r

gr
ap

h 
CN

N

D
ec

od
er

gr
ap

h 
CN

N

Continuous representation
space of molecules

toxicity, solubility,

Property predictor
graph CNN
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Molecule generation

Molecules generated with a graph VAE

Simonovsky and Komodakis, “Graphvae: Towards generation of small graphs using
variational autoencoders”, 2017; De Cao and Kipf, “MolGAN: An implicit generative
model for small molecular graphs”, 2018



Face from DNA

Claes et al, “Facial recognition from DNA using face-to-DNA classifiers”, Nature
Communications 2019



47/47

Thank you!
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