
RegML 2020
Class 7

Dictionary learning

Lorenzo Rosasco
UNIGE-MIT-IIT

Data representation

A mapping of data in new format better suited for further processing

Data Representation

L.Rosasco, RegML 2020

Data representation (cont.)

X data-space, a data representation is a map

Φ : X → F ,

to a representation space F .

Different names in different fields:

I machine learning: feature map

I signal processing: analysis operator/transform

I information theory: encoder

I computational geometry: embedding

L.Rosasco, RegML 2020

Outline

Part II: Data representation by learning
Dictionary learning
Metric learning

L.Rosasco, RegML 2020

Supervised or Unsupervised?

Supervised (labelled/annotated) data are expensive!

Ideally a good data representation should reduce the need of (human)
annotation. . .

 Unsupervised learning of Φ

L.Rosasco, RegML 2020

Unsupervised representation learning

Samples
S = {x1, . . . , xn}

from a distribution ρ on the input space X are available.

What are the principles to learn ”good” representation in an
unsupervised fashion?

L.Rosasco, RegML 2020

Unsupervised representation learning principles

Two main concepts

1. Reconstruction, there exists a map Ψ : F → X such that

Ψ ◦ Φ(x) ∼ x, ∀x ∈ X

2. Similarity preservation, it holds

Φ(x) ∼ Φ(x′)⇔ x ∼ x′, ∀x ∈ X

Most unsupervised work has focused on reconstruction rather than on
similarity
99K We give an overview next

L.Rosasco, RegML 2020

Unsupervised representation learning principles

Two main concepts

1. Reconstruction, there exists a map Ψ : F → X such that

Ψ ◦ Φ(x) ∼ x, ∀x ∈ X

2. Similarity preservation, it holds

Φ(x) ∼ Φ(x′)⇔ x ∼ x′, ∀x ∈ X

Most unsupervised work has focused on reconstruction rather than on
similarity
99K We give an overview next

L.Rosasco, RegML 2020

Reconstruction based data representation

Basic idea: the quality of a representation Φ is measured by the
reconstruction error provided by an associated reconstruction Ψ

‖x−Ψ ◦ Φ(x)‖ ,

L.Rosasco, RegML 2020

Empirical data and population

Given S = {x1, . . . , xn} minimize the empirical reconstruction error

Ê(Φ,Ψ) =
1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 ,

as a proxy to the expected reconstruction error

E(Φ,Ψ) =

∫
dρ(x) ‖x−Ψ ◦ Φ(x)‖2 ,

where ρ is the data distribution (fixed but uknown).

L.Rosasco, RegML 2020

Empirical data and population

Given S = {x1, . . . , xn} minimize the empirical reconstruction error

Ê(Φ,Ψ) =
1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 ,

as a proxy to the expected reconstruction error

E(Φ,Ψ) =

∫
dρ(x) ‖x−Ψ ◦ Φ(x)‖2 ,

where ρ is the data distribution (fixed but uknown).

L.Rosasco, RegML 2020

Empirical data and population

min
Φ,Ψ
E(Φ,Ψ), E(Φ,Ψ) =

∫
dρ(x) ‖x−Ψ ◦ Φ(x)‖2 ,

Caveat. . .
But reconstruction alone is not enough...
copying data, i.e. Ψ ◦ Φ = I, gives zero reconstruction error!

L.Rosasco, RegML 2020

Dictionary learning

‖x−Ψ ◦ Φ(x)‖

Let X = Rd, F = Rp

1. linear reconstruction
Ψ ∈ D,

with D a subset of the space of linear maps from X to F .

2. nearest neighbor representation,

Φ(x) = ΦΨ(x) = arg min
β∈Fλ

‖x−Ψβ‖2 , Ψ ∈ D,

where Fλ is a subset of F .

L.Rosasco, RegML 2020

Dictionary learning

‖x−Ψ ◦ Φ(x)‖

Let X = Rd, F = Rp

1. linear reconstruction
Ψ ∈ D,

with D a subset of the space of linear maps from X to F .

2. nearest neighbor representation,

Φ(x) = ΦΨ(x) = arg min
β∈Fλ

‖x−Ψβ‖2 , Ψ ∈ D,

where Fλ is a subset of F .

L.Rosasco, RegML 2020

Linear reconstruction and dictionaries

Each reconstruction Ψ ∈ D can be identified a dictionary matrix with
columns

a1, . . . , ap ∈ Rd.

The reconstruction of an input x ∈ X corresponds to a suitable linear
expansion on the dictionary

x =

p∑

j=1

ajβj , β1, . . . , βp ∈ R.

L.Rosasco, RegML 2020

Linear reconstruction and dictionaries

Each reconstruction Ψ ∈ D can be identified a dictionary matrix with
columns

a1, . . . , ap ∈ Rd.

The reconstruction of an input x ∈ X corresponds to a suitable linear
expansion on the dictionary

x =

p∑

j=1

ajβj , β1, . . . , βp ∈ R.

L.Rosasco, RegML 2020

Nearest neighbor representation

Φ(x) = ΦΨ(x) = arg min
β∈Fλ

‖x−Ψβ‖2 , Ψ ∈ D,

The above representation is called nearest neighbor (NN) since, for

Ψ ∈ D, Xλ = ΨFλ,

the representation Φ(x) provides the closest point to x in Xλ,

d(x,Xλ) = min
x′∈Xλ

‖x− x′‖2 = min
β∈Fλ

‖x−Ψβ‖2 .

L.Rosasco, RegML 2020

Nearest neighbor representation (cont.)

NN representation are defined by a constrained inverse problem,

min
β∈Fλ

‖x−Ψβ‖2 .

Alternatively let Fλ = F and adding a regularization term Rλ : F → R

min
β∈F

{
‖x−Ψβ‖2 +Rλ(β)

}
.

L.Rosasco, RegML 2020

Nearest neighbor representation (cont.)

NN representation are defined by a constrained inverse problem,

min
β∈Fλ

‖x−Ψβ‖2 .

Alternatively let Fλ = F and adding a regularization term Rλ : F → R

min
β∈F

{
‖x−Ψβ‖2 +Rλ(β)

}
.

L.Rosasco, RegML 2020

Dictionary learning

Then

min
Ψ,Φ

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2

becomes

min
Ψ∈D︸︷︷︸

Dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
Representation learning

.

Dictionary learning

I learning a regularized representation on a dictionary. . .

I while simultaneously learning the dictionary itself.

L.Rosasco, RegML 2020

Examples

The framework introduced above encompasses a large number of
approaches.

I PCA (& kernel PCA)

I KSVD

I Sparse coding

I K-means

I K-flats

I . . .

L.Rosasco, RegML 2020

Example 1: Principal Component Analysis (PCA)

Let Fλ = Fk = Rk, k ≤ min{n, d}, and

D = {Ψ : F → X , linear | Ψ∗Ψ = I}.

I Ψ is a d× k matrix with orthogonal, unit norm columns,

Ψβ =

k∑

j=1

ajβj , β ∈ F

I Ψ∗ : X → F , Ψ∗x = (〈a1, x〉 , . . . , 〈ak, x〉), x ∈ X

L.Rosasco, RegML 2020

Example 1: Principal Component Analysis (PCA)

Let Fλ = Fk = Rk, k ≤ min{n, d}, and

D = {Ψ : F → X , linear | Ψ∗Ψ = I}.

I Ψ is a d× k matrix with orthogonal, unit norm columns,

Ψβ =

k∑

j=1

ajβj , β ∈ F

I Ψ∗ : X → F , Ψ∗x = (〈a1, x〉 , . . . , 〈ak, x〉), x ∈ X

L.Rosasco, RegML 2020

Example 1: Principal Component Analysis (PCA)

Let Fλ = Fk = Rk, k ≤ min{n, d}, and

D = {Ψ : F → X , linear | Ψ∗Ψ = I}.

I Ψ is a d× k matrix with orthogonal, unit norm columns,

Ψβ =

k∑

j=1

ajβj , β ∈ F

I Ψ∗ : X → F , Ψ∗x = (〈a1, x〉 , . . . , 〈ak, x〉), x ∈ X

L.Rosasco, RegML 2020

PCA & best subspace

I ΨΨ∗ : X → X , ΨΨ∗x =
∑k
j=1 aj 〈aj , x〉 , x ∈ X .

x

a

x � hx, ai a

|{z}
hx,aia

I P = ΨΨ∗ is the projection (P = P 2) on the subspace of Rd
spanned by a1, . . . , ak.

L.Rosasco, RegML 2020

Rewriting PCA

Note that,

Φ(x) = Ψ∗x = arg min
β∈Fk

‖x−Ψβ‖2 , ∀x ∈ X ,

so that we can rewrite the PCA minimization as

min
Ψ∈D

1

n

n∑

i=1

‖x−ΨΨ∗xi‖2 .

Subspace learning
The problem of finding a k−dimensional orthogonal projection giving the
best reconstruction.

L.Rosasco, RegML 2020

Rewriting PCA

Note that,

Φ(x) = Ψ∗x = arg min
β∈Fk

‖x−Ψβ‖2 , ∀x ∈ X ,

so that we can rewrite the PCA minimization as

min
Ψ∈D

1

n

n∑

i=1

‖x−ΨΨ∗xi‖2 .

Subspace learning
The problem of finding a k−dimensional orthogonal projection giving the
best reconstruction.

L.Rosasco, RegML 2020

PCA computation

Let X̂ the n× d data matrix and C = 1
nX̂

T X̂.

. . . PCA optimization problem is solved by the eigenvector of C
associated to the K largest eigenvalues.

L.Rosasco, RegML 2020

PCA computation

Let X̂ the n× d data matrix and C = 1
nX̂

T X̂.

. . . PCA optimization problem is solved by the eigenvector of C
associated to the K largest eigenvalues.

L.Rosasco, RegML 2020

Learning a linear representation with PCA

Subspace learning
The problem of finding a k−dimensional orthogonal projection giving the
best reconstruction.

X

PCA assumes the support of the data distribution to be well
approximated by a low dimensional linear subspace L.Rosasco, RegML 2020

PCA beyond linearity

X

L.Rosasco, RegML 2020

PCA beyond linearity

X

L.Rosasco, RegML 2020

PCA beyond linearity

X

L.Rosasco, RegML 2020

Kernel PCA

Consider

φ : X → H, and K(x, x′) = 〈φ(x), φ(x′)〉H
a feature map and associated (reproducing) kernel.
We can consider the empirical reconstruction in the feature space,

min
Ψ∈D

1

n

n∑

i=1

min
βi∈H

‖φ(xi)−Ψβi‖2H .

Connection to manifold learning. . .

L.Rosasco, RegML 2020

Examples 2: Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to

I F = Rp,

I p ≥ d, Fλ = {β ∈ F : ‖β‖1 ≤ λ}, λ > 0,

I D = {Ψ : F → X | ‖Ψej‖F ≤ 1}.

Hence,

min
Ψ∈D︸︷︷︸

dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
sparse representation

L.Rosasco, RegML 2020

Examples 2: Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to

I F = Rp,

I p ≥ d, Fλ = {β ∈ F : ‖β‖1 ≤ λ}, λ > 0,

I D = {Ψ : F → X | ‖Ψej‖F ≤ 1}.

Hence,

min
Ψ∈D︸︷︷︸

dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
sparse representation

L.Rosasco, RegML 2020

Examples 2: Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to

I F = Rp,

I p ≥ d, Fλ = {β ∈ F : ‖β‖1 ≤ λ}, λ > 0,

I D = {Ψ : F → X | ‖Ψej‖F ≤ 1}.

Hence,

min
Ψ∈D︸︷︷︸

dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
sparse representation

L.Rosasco, RegML 2020

Examples 2: Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to

I F = Rp,

I p ≥ d, Fλ = {β ∈ F : ‖β‖1 ≤ λ}, λ > 0,

I D = {Ψ : F → X | ‖Ψej‖F ≤ 1}.

Hence,

min
Ψ∈D︸︷︷︸

dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
sparse representation

L.Rosasco, RegML 2020

Examples 2: Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to

I F = Rp,

I p ≥ d, Fλ = {β ∈ F : ‖β‖1 ≤ λ}, λ > 0,

I D = {Ψ : F → X | ‖Ψej‖F ≤ 1}.

Hence,

min
Ψ∈D︸︷︷︸

dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
sparse representation

L.Rosasco, RegML 2020

Sparse coding (cont.)

min
Ψ∈D

1

n

n∑

i=1

min
βi∈Rp,‖βi‖≤λ

‖xi −Ψβi‖2

I The problem is not convex. . . but it is separately convex in the
βi’s and Ψ.

I An alternating minimization is fairly natural (other approaches
possible–see e.g. [Schnass ’15, Elad et al. ’06])

L.Rosasco, RegML 2020

Representation computation

Given a dictionary, the problems

min
β∈Fλ

‖xi −Ψβ‖2 , i = 1, . . . , n

are convex and correspond to a sparse representation problems.

They can be solved using convex optimization techniques.

Splitting/proximal methods

β0, βt+1 = Tγ,λ(βt − γΨ∗(xi −Ψβt)), t = 0, . . . , Tmax

with Tλ the soft-thresholding operator,

L.Rosasco, RegML 2020

Dictionary computation

Given Φ(xi) = βi, i = 1, . . . , n, we have

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
Ψ∈D

1

n

∥∥∥X̂ −B∗Ψ
∥∥∥

2

F
,

where B is the n× p matrix with rows βi, i = 1, . . . , n and we denoted
by ‖·‖F , the Frobenius norm.

It is a convex problem, solvable via standard techniques.

Splitting/proximal methods

Ψ0, Ψt+1 = P (Ψt − γtB∗(X −ΨB)), t = 0, . . . , Tmax

where P is the projection corresponding to the constraints,

P (Ψj) = Ψj/
∥∥Ψj

∥∥ , if
∥∥Ψj

∥∥ > 1

P (Ψj) = Ψj , if
∥∥Ψj

∥∥ ≤ 1.

L.Rosasco, RegML 2020

Dictionary computation

Given Φ(xi) = βi, i = 1, . . . , n, we have

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
Ψ∈D

1

n

∥∥∥X̂ −B∗Ψ
∥∥∥

2

F
,

where B is the n× p matrix with rows βi, i = 1, . . . , n and we denoted
by ‖·‖F , the Frobenius norm.

It is a convex problem, solvable via standard techniques.

Splitting/proximal methods

Ψ0, Ψt+1 = P (Ψt − γtB∗(X −ΨB)), t = 0, . . . , Tmax

where P is the projection corresponding to the constraints,

P (Ψj) = Ψj/
∥∥Ψj

∥∥ , if
∥∥Ψj

∥∥ > 1

P (Ψj) = Ψj , if
∥∥Ψj

∥∥ ≤ 1.

L.Rosasco, RegML 2020

Sparse coding model

I Sparse coding assumes the support of the data distribution to be a
union of

(
p
s

)
subspaces, i.e. all possible s dimensional subspaces in

Rp, where s is the sparsity level.

I More general penalties, more general geometric assumptions.
L.Rosasco, RegML 2020

Example 3: K-means & vector quantization

K-means is typically seen as a clustering algorithm in machine
learning. . .

but it is also a classical vector quantization approach.

Here we revisit this point of view from a data representation
perspective.

K-means corresponds to

I Fλ = Fk = {e1, . . . , ek}, the canonical basis in Rk, k ≤ n
I D = {Ψ : F → X | linear}.

L.Rosasco, RegML 2020

Example 3: K-means & vector quantization

K-means is typically seen as a clustering algorithm in machine
learning. . . but it is also a classical vector quantization approach.

Here we revisit this point of view from a data representation
perspective.

K-means corresponds to

I Fλ = Fk = {e1, . . . , ek}, the canonical basis in Rk, k ≤ n
I D = {Ψ : F → X | linear}.

L.Rosasco, RegML 2020

Example 3: K-means & vector quantization

K-means is typically seen as a clustering algorithm in machine
learning. . . but it is also a classical vector quantization approach.

Here we revisit this point of view from a data representation
perspective.

K-means corresponds to

I Fλ = Fk = {e1, . . . , ek}, the canonical basis in Rk, k ≤ n
I D = {Ψ : F → X | linear}.

L.Rosasco, RegML 2020

Example 3: K-means & vector quantization

K-means is typically seen as a clustering algorithm in machine
learning. . . but it is also a classical vector quantization approach.

Here we revisit this point of view from a data representation
perspective.

K-means corresponds to

I Fλ = Fk = {e1, . . . , ek}, the canonical basis in Rk, k ≤ n

I D = {Ψ : F → X | linear}.

L.Rosasco, RegML 2020

Example 3: K-means & vector quantization

K-means is typically seen as a clustering algorithm in machine
learning. . . but it is also a classical vector quantization approach.

Here we revisit this point of view from a data representation
perspective.

K-means corresponds to

I Fλ = Fk = {e1, . . . , ek}, the canonical basis in Rk, k ≤ n
I D = {Ψ : F → X | linear}.

L.Rosasco, RegML 2020

K-means computation

min
Ψ∈D

1

n

n∑

i=1

min
βi∈{e1,...,ek}

‖xi −Ψβi‖2

The K-means problem is not convex.

Alternating minimization

1. Initialize dictionary Ψ0.

2. Let Φ(xi) = βi, i = 1, . . . , n be the solution of the problems

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

with Vj = {x ∈ S | Φ(x) = ej}, (multiple points have same
representation since k ≤ n).

3. Letting aj = Ψej , we can write

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 .

L.Rosasco, RegML 2020

K-means computation

min
Ψ∈D

1

n

n∑

i=1

min
βi∈{e1,...,ek}

‖xi −Ψβi‖2

The K-means problem is not convex.

Alternating minimization

1. Initialize dictionary Ψ0.

2. Let Φ(xi) = βi, i = 1, . . . , n be the solution of the problems

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

with Vj = {x ∈ S | Φ(x) = ej}, (multiple points have same
representation since k ≤ n).

3. Letting aj = Ψej , we can write

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 .

L.Rosasco, RegML 2020

K-means computation

min
Ψ∈D

1

n

n∑

i=1

min
βi∈{e1,...,ek}

‖xi −Ψβi‖2

The K-means problem is not convex.

Alternating minimization

1. Initialize dictionary Ψ0.

2. Let Φ(xi) = βi, i = 1, . . . , n be the solution of the problems

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

with Vj = {x ∈ S | Φ(x) = ej}, (multiple points have same
representation since k ≤ n).

3. Letting aj = Ψej , we can write

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 .

L.Rosasco, RegML 2020

K-means computation

min
Ψ∈D

1

n

n∑

i=1

min
βi∈{e1,...,ek}

‖xi −Ψβi‖2

The K-means problem is not convex.

Alternating minimization

1. Initialize dictionary Ψ0.

2. Let Φ(xi) = βi, i = 1, . . . , n be the solution of the problems

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

with Vj = {x ∈ S | Φ(x) = ej}, (multiple points have same
representation since k ≤ n).

3. Letting aj = Ψej , we can write

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 .

L.Rosasco, RegML 2020

Step 2: assignment

K-means Illustrated

Piecewise Constant -- Adaptive Tree for Point Clouds

c3

c2c1

The discrete problem

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

can be seen as an assignment step.

Clusters
The sets

Vj = {x ∈ S | Φ(x) = ej},
are called Voronoi sets and can be seen as data clusters.

L.Rosasco, RegML 2020

Step 2: assignment

K-means Illustrated

Piecewise Constant -- Adaptive Tree for Point Clouds

c3

c2c1

The discrete problem

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

can be seen as an assignment step.

Clusters
The sets

Vj = {x ∈ S | Φ(x) = ej},
are called Voronoi sets and can be seen as data clusters. L.Rosasco, RegML 2020

Step 3: centroid computation

Consider

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 ,

where aj = Ψej .

The minimization with respect to each column is independent to all
others.

Centroid computation

cj =
1

|Vj |
∑

x∈Vj
x = arg min

aj∈Rd

∑

x∈Vj
‖x− aj‖2 , j = 1, . . . , k.

L.Rosasco, RegML 2020

Step 3: centroid computation

Consider

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 ,

where aj = Ψej .

The minimization with respect to each column is independent to all
others.

Centroid computation

cj =
1

|Vj |
∑

x∈Vj
x = arg min

aj∈Rd

∑

x∈Vj
‖x− aj‖2 , j = 1, . . . , k.

L.Rosasco, RegML 2020

Step 3: centroid computation

Consider

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 ,

where aj = Ψej .

The minimization with respect to each column is independent to all
others.

Centroid computation

cj =
1

|Vj |
∑

x∈Vj
x = arg min

aj∈Rd

∑

x∈Vj
‖x− aj‖2 , j = 1, . . . , k.

L.Rosasco, RegML 2020

K-means convergence

The computational procedure described before is known as Lloyd’s
algorithm.

I Since it is an alternating minimization approach, the value of the
objective function can be shown to decrease with the iterations.

I Since there is only a finite number of possible partitions of the data
in k clusters, Lloyd’s algorithm is ensured to converge to a local
minimum in a finite number of steps.

L.Rosasco, RegML 2020

K-means convergence

The computational procedure described before is known as Lloyd’s
algorithm.

I Since it is an alternating minimization approach, the value of the
objective function can be shown to decrease with the iterations.

I Since there is only a finite number of possible partitions of the data
in k clusters, Lloyd’s algorithm is ensured to converge to a local
minimum in a finite number of steps.

L.Rosasco, RegML 2020

K-means convergence

The computational procedure described before is known as Lloyd’s
algorithm.

I Since it is an alternating minimization approach, the value of the
objective function can be shown to decrease with the iterations.

I Since there is only a finite number of possible partitions of the data
in k clusters, Lloyd’s algorithm is ensured to converge to a local
minimum in a finite number of steps.

L.Rosasco, RegML 2020

K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data,

2. Compute distances of data to the nearest centroid already chosen.

3. Choose a new centroid from the data using probabilities proportional
to such distances (squared).

4. Repeat steps 2 and 3 until k centers have been chosen.

L.Rosasco, RegML 2020

K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data,

2. Compute distances of data to the nearest centroid already chosen.

3. Choose a new centroid from the data using probabilities proportional
to such distances (squared).

4. Repeat steps 2 and 3 until k centers have been chosen.

L.Rosasco, RegML 2020

K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data,

2. Compute distances of data to the nearest centroid already chosen.

3. Choose a new centroid from the data using probabilities proportional
to such distances (squared).

4. Repeat steps 2 and 3 until k centers have been chosen.

L.Rosasco, RegML 2020

K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data,

2. Compute distances of data to the nearest centroid already chosen.

3. Choose a new centroid from the data using probabilities proportional
to such distances (squared).

4. Repeat steps 2 and 3 until k centers have been chosen.

L.Rosasco, RegML 2020

K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data,

2. Compute distances of data to the nearest centroid already chosen.

3. Choose a new centroid from the data using probabilities proportional
to such distances (squared).

4. Repeat steps 2 and 3 until k centers have been chosen.

L.Rosasco, RegML 2020

K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data,

2. Compute distances of data to the nearest centroid already chosen.

3. Choose a new centroid from the data using probabilities proportional
to such distances (squared).

4. Repeat steps 2 and 3 until k centers have been chosen.

L.Rosasco, RegML 2020

K-means & piece-wise representation

M = supp{⇢}

K-means Illustrated

Piecewise Constant -- Adaptive Tree for Point Clouds

x ⇡
⇥

c1 c2 c3

⇤
2
4

0
1
0

3
5

c3

c2c1

I k-means representation: extreme sparse representation, only one
non zero coefficient (vector quantization).

I k-means reconstruction: piecewise constant approximation of the
data, each point is reconstructed by the nearest mean.

This latter perspective suggests extensions of k-means considering higher
order data approximation such as, e.g. piecewise linear.

L.Rosasco, RegML 2020

K-means & piece-wise representation

M = supp{⇢}

K-means Illustrated

Piecewise Constant -- Adaptive Tree for Point Clouds

x ⇡
⇥

c1 c2 c3

⇤
2
4

0
1
0

3
5

c3

c2c1

I k-means representation: extreme sparse representation, only one
non zero coefficient (vector quantization).

I k-means reconstruction: piecewise constant approximation of the
data, each point is reconstructed by the nearest mean.

This latter perspective suggests extensions of k-means considering higher
order data approximation such as, e.g. piecewise linear.

L.Rosasco, RegML 2020

K-means & piece-wise representation

M = supp{⇢}

K-means Illustrated

Piecewise Constant -- Adaptive Tree for Point Clouds

x ⇡
⇥

c1 c2 c3

⇤
2
4

0
1
0

3
5

c3

c2c1

I k-means representation: extreme sparse representation, only one
non zero coefficient (vector quantization).

I k-means reconstruction: piecewise constant approximation of the
data, each point is reconstructed by the nearest mean.

This latter perspective suggests extensions of k-means considering higher
order data approximation such as, e.g. piecewise linear.

L.Rosasco, RegML 2020

K-flats & piece-wise linear representationK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1 2 3

⇤
2
4

0
c2

0

3
5

 1 2

 3

[Bradley, Mangasarian ’00, Canas, R.’12]

I k-flats representation: structured sparse representation,
coefficients are projection on a flat.

I k-flats reconstruction: piecewise linear approximation of the data,
each point is reconstructed by projection on the nearest flat.

L.Rosasco, RegML 2020

K-flats & piece-wise linear representationK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1 2 3

⇤
2
4

0
c2

0

3
5

 1 2

 3

[Bradley, Mangasarian ’00, Canas, R.’12]

I k-flats representation: structured sparse representation,
coefficients are projection on a flat.

I k-flats reconstruction: piecewise linear approximation of the data,
each point is reconstructed by projection on the nearest flat.

L.Rosasco, RegML 2020

K-flats & piece-wise linear representationK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1 2 3

⇤
2
4

0
c2

0

3
5

 1 2

 3

[Bradley, Mangasarian ’00, Canas, R.’12]

I k-flats representation: structured sparse representation,
coefficients are projection on a flat.

I k-flats reconstruction: piecewise linear approximation of the data,
each point is reconstructed by projection on the nearest flat.

L.Rosasco, RegML 2020

Remarks on K-flatsK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1 2 3

⇤
2
4

0
c2

0

3
5

 1 2

 3

I Principled way to enrich k-means representation (cfr softmax).

I Geometric structured dictionary learning.

I Non-local approximations.

L.Rosasco, RegML 2020

Remarks on K-flatsK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1 2 3

⇤
2
4

0
c2

0

3
5

 1 2

 3

I Principled way to enrich k-means representation (cfr softmax).

I Geometric structured dictionary learning.

I Non-local approximations.

L.Rosasco, RegML 2020

Remarks on K-flatsK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1 2 3

⇤
2
4

0
c2

0

3
5

 1 2

 3

I Principled way to enrich k-means representation (cfr softmax).

I Geometric structured dictionary learning.

I Non-local approximations.

L.Rosasco, RegML 2020

K-flats computations

Alternating minimization

1. Initialize flats Ψ1, . . . ,Ψk.

2. Assign point to nearest flat,

Vj = {x ∈ X |
∥∥x−ΨjΨ

∗
jx
∥∥ ≤ ‖x−ΨtΨ

∗
tx‖ , t 6= j}.

3. Update flats by computing (local) PCA in each cell Vj , j = 1, . . . , k.

L.Rosasco, RegML 2020

Kernel K-means & K-flats

It is easy to extend K-means & K-flats using kernels.

φ : X → H, and K(x, x′) = 〈φ(x), φ(x′)〉H

Consider the empirical reconstruction problem in the feature space,

min
Ψ∈D

1

n

n∑

i=1

min
βi∈{e1,...,ek}⊂H

‖φ(xi)−Ψβi‖2H .

Note: Easy to see that computation can be performed in closed form

I Kernel k-means: distance computation.

I Kernel k-flats: distance computation+local KPCA.

L.Rosasco, RegML 2020

Geometric Wavelets (GW)- Reconstruction Trees

I Select (rather than compute) a partition of the data-space

I Approximate the point in each cell via a vector/plane.

multi-scale
Selection via multi-scale/coarse-to-fine pruning of a partition tree
[Maggioni et al.. . .]

L.Rosasco, RegML 2020

K-means/flats and GW

I Can be seen as piecewise representations.

I The data model is a manifold– limit when the number of pieces goes
to infinity

I GMRA is local (cells are connected) while K-Flats is not. . .

I . . . but GMRA is multi-scale while K-flats is not. . .K-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1 2 3

⇤
2
4

0
c2

0

3
5

 1 2

 3

L.Rosasco, RegML 2020

Dictionary learning & matrix factorization

PCA,Sparse Coding, K-means/flats, Reconstruction trees are some
examples of methods based on

(P1) min
Ψ∈D︸︷︷︸

Dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
Representation learning

.

In fact, under mild conditions the above problem is a special case of
Matrix Factorization:

If the minimizations of the βi’s are independent, then

(P1)⇔ min
B,Ψ

∥∥∥X̂ −ΨB
∥∥∥

2

F

where B has columns (βi)i, X̂ data matrix, and ‖·‖F is the Frobenius
norm.

The equivalence holds for all the methods we saw before!

L.Rosasco, RegML 2020

Dictionary learning & matrix factorization

PCA,Sparse Coding, K-means/flats, Reconstruction trees are some
examples of methods based on

(P1) min
Ψ∈D︸︷︷︸

Dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
Representation learning

.

In fact, under mild conditions the above problem is a special case of
Matrix Factorization:

If the minimizations of the βi’s are independent, then

(P1)⇔ min
B,Ψ

∥∥∥X̂ −ΨB
∥∥∥

2

F

where B has columns (βi)i, X̂ data matrix, and ‖·‖F is the Frobenius
norm.

The equivalence holds for all the methods we saw before!
L.Rosasco, RegML 2020

From reconstruction to similarity

We have seen two concepts emerging

I parsimonious reconstruction

I similarity preservation

What about similarity preservation?

L.Rosasco, RegML 2020

Randomized linear representation

Consider randomized representation/reconstruction given by a set of
random templates smaller then data dimension, that is

a1, . . . , ak, k < d.

Consider Φ : X → F = Rk such that

Φ(x) = Ax = (〈x, a1〉 , . . . , 〈x, ak〉), ∀x ∈ X ,

with A random i.i.d. matrix, with rows a1, . . . , ak

L.Rosasco, RegML 2020

Randomized linear representation

Consider randomized representation/reconstruction given by a set of
random templates smaller then data dimension, that is

a1, . . . , ak, k < d.

Consider Φ : X → F = Rk such that

Φ(x) = Ax = (〈x, a1〉 , . . . , 〈x, ak〉), ∀x ∈ X ,

with A random i.i.d. matrix, with rows a1, . . . , ak

L.Rosasco, RegML 2020

Johnson-Lindenstrauss Lemma

The representation Φ(x) = Ax defines a stable embedding, i.e.

(1− ε) ‖x− x′‖ ≤ ‖Φ(x)− Φ(x′)‖ ≤ (1 + ε) ‖x− x′‖

with high probability and for all x, x′ ∈ C ⊂ X .
The precision ε depends on : 1) number of random atoms k, 2) the set C

Example:
If C is a finite set |C| = n, then

ε ∼
√

logn

k
.

L.Rosasco, RegML 2020

Johnson-Lindenstrauss Lemma

The representation Φ(x) = Ax defines a stable embedding, i.e.

(1− ε) ‖x− x′‖ ≤ ‖Φ(x)− Φ(x′)‖ ≤ (1 + ε) ‖x− x′‖

with high probability and for all x, x′ ∈ C ⊂ X .
The precision ε depends on : 1) number of random atoms k, 2) the set C

Example:
If C is a finite set |C| = n, then

ε ∼
√

logn

k
.

L.Rosasco, RegML 2020

Metric learning

Metric learning
Find D : X × X → R such that

x similar x′ ⇔ D(x, x′)

1. How to parameterize D?

2. How we know whether data points are similar?

3. How do we turn all into an optimization problem?

L.Rosasco, RegML 2020

Metric learning (cont.)

1. How to parameterize D?

Mahalanobis D(x, x′) = 〈x− x′,M(x− x′)〉
where M symmetric PD, or rather Φ(x) = Bx with M = B∗B
(using kernels possible).

2. How to know whether points are similar?
Most works assume supervised data

(xi, xj , yi,j)i,j .

3. How to turn all into an optimization problem?
Extension of classification algorithms such as support vector
machines.

L.Rosasco, RegML 2020

Metric learning (cont.)

1. How to parameterize D?

Mahalanobis D(x, x′) = 〈x− x′,M(x− x′)〉
where M symmetric PD, or rather Φ(x) = Bx with M = B∗B
(using kernels possible).

2. How to know whether points are similar?
Most works assume supervised data

(xi, xj , yi,j)i,j .

3. How to turn all into an optimization problem?
Extension of classification algorithms such as support vector
machines.

L.Rosasco, RegML 2020

Metric learning (cont.)

1. How to parameterize D?

Mahalanobis D(x, x′) = 〈x− x′,M(x− x′)〉
where M symmetric PD, or rather Φ(x) = Bx with M = B∗B
(using kernels possible).

2. How to know whether points are similar?
Most works assume supervised data

(xi, xj , yi,j)i,j .

3. How to turn all into an optimization problem?
Extension of classification algorithms such as support vector
machines.

L.Rosasco, RegML 2020

This class

I dictionary learning

I metric learning

L.Rosasco, RegML 2020

Next class

Deep learning!

L.Rosasco, RegML 2020

	Part II: Data representation by learning
	Dictionary learning
	Metric learning

