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Data representation

A mapping of data in new format better suited for further processing

Data Representation

L.Rosasco, RegML 2020



Data representation (cont.)

X data-space, a data representation is a map

Φ : X → F ,

to a representation space F .

Different names in different fields:

I machine learning: feature map

I signal processing: analysis operator/transform

I information theory: encoder

I computational geometry: embedding
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Outline

Part II: Data representation by learning
Dictionary learning
Metric learning
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Supervised or Unsupervised?

Supervised (labelled/annotated) data are expensive!

Ideally a good data representation should reduce the need of (human)
annotation. . .

 Unsupervised learning of Φ
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Unsupervised representation learning

Samples
S = {x1, . . . , xn}

from a distribution ρ on the input space X are available.

What are the principles to learn ”good” representation in an
unsupervised fashion?
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Unsupervised representation learning principles

Two main concepts

1. Reconstruction, there exists a map Ψ : F → X such that

Ψ ◦ Φ(x) ∼ x, ∀x ∈ X

2. Similarity preservation, it holds

Φ(x) ∼ Φ(x′)⇔ x ∼ x′, ∀x ∈ X

Most unsupervised work has focused on reconstruction rather than on
similarity
99K We give an overview next
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Reconstruction based data representation

Basic idea: the quality of a representation Φ is measured by the
reconstruction error provided by an associated reconstruction Ψ

‖x−Ψ ◦ Φ(x)‖ ,
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Empirical data and population

Given S = {x1, . . . , xn} minimize the empirical reconstruction error

Ê(Φ,Ψ) =
1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 ,

as a proxy to the expected reconstruction error

E(Φ,Ψ) =

∫
dρ(x) ‖x−Ψ ◦ Φ(x)‖2 ,

where ρ is the data distribution (fixed but uknown).
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Ê(Φ,Ψ) =
1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 ,

as a proxy to the expected reconstruction error

E(Φ,Ψ) =

∫
dρ(x) ‖x−Ψ ◦ Φ(x)‖2 ,

where ρ is the data distribution (fixed but uknown).

L.Rosasco, RegML 2020



Empirical data and population

min
Φ,Ψ
E(Φ,Ψ), E(Φ,Ψ) =

∫
dρ(x) ‖x−Ψ ◦ Φ(x)‖2 ,

Caveat. . .
But reconstruction alone is not enough...
copying data, i.e. Ψ ◦ Φ = I, gives zero reconstruction error!
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Dictionary learning

‖x−Ψ ◦ Φ(x)‖

Let X = Rd, F = Rp

1. linear reconstruction
Ψ ∈ D,

with D a subset of the space of linear maps from X to F .

2. nearest neighbor representation,

Φ(x) = ΦΨ(x) = arg min
β∈Fλ

‖x−Ψβ‖2 , Ψ ∈ D,

where Fλ is a subset of F .
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Linear reconstruction and dictionaries

Each reconstruction Ψ ∈ D can be identified a dictionary matrix with
columns

a1, . . . , ap ∈ Rd.

The reconstruction of an input x ∈ X corresponds to a suitable linear
expansion on the dictionary

x =

p∑

j=1

ajβj , β1, . . . , βp ∈ R.
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Nearest neighbor representation

Φ(x) = ΦΨ(x) = arg min
β∈Fλ

‖x−Ψβ‖2 , Ψ ∈ D,

The above representation is called nearest neighbor (NN) since, for

Ψ ∈ D, Xλ = ΨFλ,

the representation Φ(x) provides the closest point to x in Xλ,

d(x,Xλ) = min
x′∈Xλ

‖x− x′‖2 = min
β∈Fλ

‖x−Ψβ‖2 .
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Nearest neighbor representation (cont.)

NN representation are defined by a constrained inverse problem,

min
β∈Fλ

‖x−Ψβ‖2 .

Alternatively let Fλ = F and adding a regularization term Rλ : F → R

min
β∈F

{
‖x−Ψβ‖2 +Rλ(β)

}
.

L.Rosasco, RegML 2020



Nearest neighbor representation (cont.)

NN representation are defined by a constrained inverse problem,

min
β∈Fλ

‖x−Ψβ‖2 .

Alternatively let Fλ = F and adding a regularization term Rλ : F → R

min
β∈F

{
‖x−Ψβ‖2 +Rλ(β)

}
.

L.Rosasco, RegML 2020



Dictionary learning

Then

min
Ψ,Φ

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2

becomes

min
Ψ∈D︸︷︷︸

Dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
Representation learning

.

Dictionary learning

I learning a regularized representation on a dictionary. . .

I while simultaneously learning the dictionary itself.
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Examples

The framework introduced above encompasses a large number of
approaches.

I PCA (& kernel PCA)

I KSVD

I Sparse coding

I K-means

I K-flats

I . . .
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Example 1: Principal Component Analysis (PCA)

Let Fλ = Fk = Rk, k ≤ min{n, d}, and

D = {Ψ : F → X , linear | Ψ∗Ψ = I}.

I Ψ is a d× k matrix with orthogonal, unit norm columns,

Ψβ =

k∑

j=1

ajβj , β ∈ F

I Ψ∗ : X → F , Ψ∗x = (〈a1, x〉 , . . . , 〈ak, x〉), x ∈ X
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PCA & best subspace

I ΨΨ∗ : X → X , ΨΨ∗x =
∑k
j=1 aj 〈aj , x〉 , x ∈ X .

x

a

x � hx, ai a

|{z}
hx,aia

I P = ΨΨ∗ is the projection (P = P 2) on the subspace of Rd
spanned by a1, . . . , ak.
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Rewriting PCA

Note that,

Φ(x) = Ψ∗x = arg min
β∈Fk

‖x−Ψβ‖2 , ∀x ∈ X ,

so that we can rewrite the PCA minimization as

min
Ψ∈D

1

n

n∑

i=1

‖x−ΨΨ∗xi‖2 .

Subspace learning
The problem of finding a k−dimensional orthogonal projection giving the
best reconstruction.
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PCA computation

Let X̂ the n× d data matrix and C = 1
nX̂

T X̂.

. . . PCA optimization problem is solved by the eigenvector of C
associated to the K largest eigenvalues.
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Learning a linear representation with PCA

Subspace learning
The problem of finding a k−dimensional orthogonal projection giving the
best reconstruction.

X

PCA assumes the support of the data distribution to be well
approximated by a low dimensional linear subspace L.Rosasco, RegML 2020



PCA beyond linearity

X
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Kernel PCA

Consider

φ : X → H, and K(x, x′) = 〈φ(x), φ(x′)〉H
a feature map and associated (reproducing) kernel.
We can consider the empirical reconstruction in the feature space,

min
Ψ∈D

1

n

n∑

i=1

min
βi∈H

‖φ(xi)−Ψβi‖2H .

Connection to manifold learning. . .
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Examples 2: Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to

I F = Rp,

I p ≥ d, Fλ = {β ∈ F : ‖β‖1 ≤ λ}, λ > 0,

I D = {Ψ : F → X | ‖Ψej‖F ≤ 1}.

Hence,

min
Ψ∈D︸︷︷︸

dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
sparse representation
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Sparse coding (cont.)

min
Ψ∈D

1

n

n∑

i=1

min
βi∈Rp,‖βi‖≤λ

‖xi −Ψβi‖2

I The problem is not convex. . . but it is separately convex in the
βi’s and Ψ.

I An alternating minimization is fairly natural (other approaches
possible–see e.g. [Schnass ’15, Elad et al. ’06])
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Representation computation

Given a dictionary, the problems

min
β∈Fλ

‖xi −Ψβ‖2 , i = 1, . . . , n

are convex and correspond to a sparse representation problems.

They can be solved using convex optimization techniques.

Splitting/proximal methods

β0, βt+1 = Tγ,λ(βt − γΨ∗(xi −Ψβt)), t = 0, . . . , Tmax

with Tλ the soft-thresholding operator,
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Dictionary computation

Given Φ(xi) = βi, i = 1, . . . , n, we have

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
Ψ∈D

1

n

∥∥∥X̂ −B∗Ψ
∥∥∥

2

F
,

where B is the n× p matrix with rows βi, i = 1, . . . , n and we denoted
by ‖·‖F , the Frobenius norm.

It is a convex problem, solvable via standard techniques.

Splitting/proximal methods

Ψ0, Ψt+1 = P (Ψt − γtB∗(X −ΨB)), t = 0, . . . , Tmax

where P is the projection corresponding to the constraints,

P (Ψj) = Ψj/
∥∥Ψj

∥∥ , if
∥∥Ψj

∥∥ > 1

P (Ψj) = Ψj , if
∥∥Ψj

∥∥ ≤ 1.
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Sparse coding model

I Sparse coding assumes the support of the data distribution to be a
union of

(
p
s

)
subspaces, i.e. all possible s dimensional subspaces in

Rp, where s is the sparsity level.

I More general penalties, more general geometric assumptions.
L.Rosasco, RegML 2020



Example 3: K-means & vector quantization

K-means is typically seen as a clustering algorithm in machine
learning. . .

but it is also a classical vector quantization approach.

Here we revisit this point of view from a data representation
perspective.

K-means corresponds to

I Fλ = Fk = {e1, . . . , ek}, the canonical basis in Rk, k ≤ n
I D = {Ψ : F → X | linear}.
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K-means computation

min
Ψ∈D

1

n

n∑

i=1

min
βi∈{e1,...,ek}

‖xi −Ψβi‖2

The K-means problem is not convex.

Alternating minimization

1. Initialize dictionary Ψ0.

2. Let Φ(xi) = βi, i = 1, . . . , n be the solution of the problems

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

with Vj = {x ∈ S | Φ(x) = ej}, (multiple points have same
representation since k ≤ n).

3. Letting aj = Ψej , we can write

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 .
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Step 2: assignment

K-means Illustrated

Piecewise Constant -- Adaptive Tree for Point Clouds

c3

c2c1

The discrete problem

min
β∈{e1,...,ek}

‖xi −Ψβ‖2 , i = 1, . . . , n.

can be seen as an assignment step.

Clusters
The sets

Vj = {x ∈ S | Φ(x) = ej},
are called Voronoi sets and can be seen as data clusters.
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Step 3: centroid computation

Consider

min
Ψ∈D

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
a1,...,ak∈Rd

1

n

k∑

j=1

∑

x∈Vj
‖x− aj‖2 ,

where aj = Ψej .

The minimization with respect to each column is independent to all
others.

Centroid computation

cj =
1

|Vj |
∑

x∈Vj
x = arg min

aj∈Rd

∑

x∈Vj
‖x− aj‖2 , j = 1, . . . , k.
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K-means convergence

The computational procedure described before is known as Lloyd’s
algorithm.

I Since it is an alternating minimization approach, the value of the
objective function can be shown to decrease with the iterations.

I Since there is only a finite number of possible partitions of the data
in k clusters, Lloyd’s algorithm is ensured to converge to a local
minimum in a finite number of steps.
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K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data,

2. Compute distances of data to the nearest centroid already chosen.

3. Choose a new centroid from the data using probabilities proportional
to such distances (squared).

4. Repeat steps 2 and 3 until k centers have been chosen.
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K-means & piece-wise representation

M = supp{⇢}

K-means Illustrated

Piecewise Constant -- Adaptive Tree for Point Clouds

x ⇡
⇥

c1 c2 c3

⇤
2
4

0
1
0

3
5

c3

c2c1

I k-means representation: extreme sparse representation, only one
non zero coefficient (vector quantization).

I k-means reconstruction: piecewise constant approximation of the
data, each point is reconstructed by the nearest mean.

This latter perspective suggests extensions of k-means considering higher
order data approximation such as, e.g. piecewise linear.
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K-flats & piece-wise linear representationK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
⇥
 1  2  3

⇤
2
4

0
c2

0

3
5

 1  2

 3

[Bradley, Mangasarian ’00, Canas, R.’12]

I k-flats representation: structured sparse representation,
coefficients are projection on a flat.

I k-flats reconstruction: piecewise linear approximation of the data,
each point is reconstructed by projection on the nearest flat.
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Remarks on K-flatsK-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree
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I Principled way to enrich k-means representation (cfr softmax).

I Geometric structured dictionary learning.

I Non-local approximations.
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K-flats computations

Alternating minimization

1. Initialize flats Ψ1, . . . ,Ψk.

2. Assign point to nearest flat,

Vj = {x ∈ X |
∥∥x−ΨjΨ

∗
jx
∥∥ ≤ ‖x−ΨtΨ

∗
tx‖ , t 6= j}.

3. Update flats by computing (local) PCA in each cell Vj , j = 1, . . . , k.
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Kernel K-means & K-flats

It is easy to extend K-means & K-flats using kernels.

φ : X → H, and K(x, x′) = 〈φ(x), φ(x′)〉H

Consider the empirical reconstruction problem in the feature space,

min
Ψ∈D

1

n

n∑

i=1

min
βi∈{e1,...,ek}⊂H

‖φ(xi)−Ψβi‖2H .

Note: Easy to see that computation can be performed in closed form

I Kernel k-means: distance computation.

I Kernel k-flats: distance computation+local KPCA.
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Geometric Wavelets (GW)- Reconstruction Trees

I Select (rather than compute) a partition of the data-space

I Approximate the point in each cell via a vector/plane.

multi-scale
Selection via multi-scale/coarse-to-fine pruning of a partition tree
[Maggioni et al.. . . ]
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K-means/flats and GW

I Can be seen as piecewise representations.

I The data model is a manifold– limit when the number of pieces goes
to infinity

I GMRA is local (cells are connected) while K-Flats is not. . .

I . . . but GMRA is multi-scale while K-flats is not. . .K-Flats

supp(�)

K-Flats illustrated

M = supp{⇢}

Piecewise Linear Approximation -- Adaptive Tree

x ⇡
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 1  2  3
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Dictionary learning & matrix factorization

PCA,Sparse Coding, K-means/flats, Reconstruction trees are some
examples of methods based on

(P1) min
Ψ∈D︸︷︷︸

Dictionary learning

1

n

n∑

i=1

min
βi∈Fλ

‖xi −Ψβi‖2
︸ ︷︷ ︸
Representation learning

.

In fact, under mild conditions the above problem is a special case of
Matrix Factorization:

If the minimizations of the βi’s are independent, then

(P1)⇔ min
B,Ψ

∥∥∥X̂ −ΨB
∥∥∥

2

F

where B has columns (βi)i, X̂ data matrix, and ‖·‖F is the Frobenius
norm.

The equivalence holds for all the methods we saw before!
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From reconstruction to similarity

We have seen two concepts emerging

I parsimonious reconstruction

I similarity preservation

What about similarity preservation?
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Randomized linear representation

Consider randomized representation/reconstruction given by a set of
random templates smaller then data dimension, that is

a1, . . . , ak, k < d.

Consider Φ : X → F = Rk such that

Φ(x) = Ax = (〈x, a1〉 , . . . , 〈x, ak〉), ∀x ∈ X ,

with A random i.i.d. matrix, with rows a1, . . . , ak
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Johnson-Lindenstrauss Lemma

The representation Φ(x) = Ax defines a stable embedding, i.e.

(1− ε) ‖x− x′‖ ≤ ‖Φ(x)− Φ(x′)‖ ≤ (1 + ε) ‖x− x′‖

with high probability and for all x, x′ ∈ C ⊂ X .
The precision ε depends on : 1) number of random atoms k, 2) the set C

Example:
If C is a finite set |C| = n, then

ε ∼
√

logn

k
.
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Metric learning

Metric learning
Find D : X × X → R such that

x similar x′ ⇔ D(x, x′)

1. How to parameterize D?

2. How we know whether data points are similar?

3. How do we turn all into an optimization problem?
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Metric learning (cont.)

1. How to parameterize D?

Mahalanobis D(x, x′) = 〈x− x′,M(x− x′)〉
where M symmetric PD, or rather Φ(x) = Bx with M = B∗B
(using kernels possible).

2. How to know whether points are similar?
Most works assume supervised data

(xi, xj , yi,j)i,j .

3. How to turn all into an optimization problem?
Extension of classification algorithms such as support vector
machines.
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This class

I dictionary learning

I metric learning
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Next class

Deep learning!
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