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Supervised vs unsupervised learning?

So far we have been thinking of learning schemes made in two steps

f({E) = <U},(I)(x)>]__’ Ve e X

» unsupervised learning of ®

» supervised learning of w
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Supervised vs unsupervised learning?

So far we have been thinking of learning schemes made in two steps

f({E) = <’LU,(I)({£)>J__’ Ve e X

» unsupervised learning of ®

» supervised learning of w

But can we perform only one learning step?
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In practice all is multi-layer!
(an old slide)

Typical data representation schemes, e.g. in vision or speech, involve
multiple stages (/ayers).

Pipeline

Raw data are often processed:
» first computing some of low level features,
» then learning some mid level representation,
> ..

» finally using supervised learning.

These stages are often done separately, but is it possible to design
end-to-end learning systems?
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In practice all is (becoming) deep-learning!
(updated slide)

Typical data representation schemes e.g. in vision or speech, involve
deep learning.

Pipeline

» Design some wild- but “differentiable” hierarchical architecture.
» Proceed with end-to-end learning!!

2048 2048

Max ) Max pooling
pooling pooling

Ok, maybe not all is deep learning but let’s take a look
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Shallow nets

f(z) ={w,®()), z— D(x)
Fixed
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Shallow nets

f(z) ={w,®()), z— D(x)

———
Fixed
Empirical Risk Minimization (ERM)
1< )
min — ;(yi — (w, ®(2:)))

L.Rq
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Neural Nets

Basic idea of neural networks: functions obtained by composition.

P=Pr0---0byo0 Py
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Neural Nets

Basic idea of neural networks: functions obtained by composition.

P=Pr0---0byo0 Py

Let dy = d and

Py R¥1 5 R%, ¢=1,...,L
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Neural Nets

Basic idea of neural networks: functions obtained by composition.
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Let dy = d and
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where
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Neural Nets

Basic idea of neural networks: functions obtained by composition.

P=Pro0---0Py0P,

Let dy = d and
Py R¥1 5 R%, ¢=1,...,L

and in particular
q)g:UOWg, EZI,...,L

where
W,:Ré1 s RY¥ ¢=1,...,L

linear/affine and o is a non linear map acting component-wise

oc:R—R.
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Deep neural nets

f(x):<w7(bL(x)>7 q)L:@LO"'O@l
compositional representation

61=O'OVV1 ELZO'OW]L
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Deep neural nets

f(x):<w7(bL(x)>7 q)L:@LO"'O@l

compositional representation

P, =co0W, ... ®p=co0W;
ERM
min 13 (00— (. (2)))?
w,(Wy); n gt
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Neural networks terminology

O, (z) = o(Wy,...0(Wao(Wiz)))

» Each intermediate representation corresponds to a (hidden) layer

» The dimensionalities (d;), correspond to the number of hidden
units

» the non linearity is called activation function

L.Rosasco, RegML 2018 o



Neural networks illustrated

AN
YN

» Each neuron compute an inner product based on a column of a
weight matrix W

» The non-linearity o is the neuron activation function.
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Activation functions

» logistic function s(a) = (1 +e %)}, a €R,
> hyperbolic tangent s(a) = (e® —e™%)/(e* + ™ %), a € R,
» hinge s(a) = |s|+, a € R.

Note:
-If the activation is chosen to be linear the architecture is equivalent to
one layer.
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Neural networks function spaces

Consider the non linear space of functions of the form f,, w,), : & = R,

Jo,owoye (@) = (w, @, (), Qw,), = o(Wp ...0(Wao(Wix)))

Very little structure, but we can :
> train by gradient descent (next)

> get (some) approximation/statistical guarantees (later)
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One layer neural networks

Consider only one hidden layer:
fw,w(z) = (w,0(W)) ij z))

typically optimized given supervised data

n

Z wa xz))zv

possibly with norm constraints on the weights (regularization).
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One layer neural networks

Consider only one hidden layer:
fw,w(z) = (w,0(W)) ij z))

typically optimized given supervised data

n

Z wa 371))27

possibly with norm constraints on the weights (regularization).

Problem is non-convex! (maybe possibly smooth depending on o)
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Back-propagation

Empirical risk minimization,

An approximate minimizer is computed via the following update rules

o€
t+1 _ t t t
w; = wj—“YtaTuj(w W)
o€
t+1 t t+1 1rrt
Wj,k = Wj,k - ’Ytiawm (w5, W)

where the step-size (v;); is often called learning rate.

L.Rosasco, RegML 2018 12



Back-propagation & chain rule

Direct computations show that:

oE
5 (W W) = ,22 = fwwy(:))) hy
J
Ay
o , .
8Wj,k(w’W) = —QZ — fow.w)(@:))wjo’ ((wy, z)) x;
Ni,k

Back-prop equations: 7;, = Aj;c;s' ((w;, 7))

Using above equations, the updates are performed in two steps:
» Forward pass compute function values keeping weights fixed,
» Backward pass compute errors and propagate
» Hence the weights are updated.

L.Rosasco, RegML 2018
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Few remarks

» Multiple layers can be analogously considered
» Batch gradients descent can be replaced by stochastic gradient.

> Faster iterations are available, e.g. variable metric/accelerated
gradient. . ..

» Online update rules are potentially biologically plausible- Hebbian
learning rules describing neuron plasticity.
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Computations

n

gling(w, w), g(w, W) = Z(yz = fw,w) (z:)))?

i=1

In practice, no access to f, but only to approximate minimizers.

X0
KR
SEOX00 i\
s N
N, 78
NN Sttt \ Wi

R

RLRRLRLA
R

» Non-convex problem
» Convergence of back-prop to a reasonable local minimum can
depend heavily on the initialization.

» Empirically: the more the layers the easier to find good minima.
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An older idea: pre-training and unsupervised learning

Pre-training

» Use unsupervised training of each layer to initialize supervised
training.
> Potential benefit of unlabeled data.
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Auto-encoders

z Q O Q Q O

@ Q

» A neural network with one input layer, one output layer and one
(or more) hidden layers connecting them.

» The output layer has equally many nodes as the input layer,
> It is trained to predict the input rather than some target output.
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Auto-encoders (cont.)

An auto encoder with one hidden layer of k& units, can be seen as a
representation-reconstruction pair:

QX — Fp, Ox)=0Wz), VeeX
with ., = RF, k < d and

V:F > X, UE) =0 (WB), VBeF

L.Rosasco, RegML 2018
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Auto-encoders & dictionary learning

O(z) =0 (Wa),  V(B)=0(W'P)

The above formulation is closely related to dictionary learning.
The weights can be seen as dictionary atoms.

Reconstructive approaches have connections with so called energy
models [LeCun et al.. . .]

Possible probabilistic/Bayesian interpretations/variations (e.g.
Boltzmann machine [Hinton et al....])

L.Rosasco, RegML 2018
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Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al '06]. ..

(P1oWy)o(PyoWy)---0(PypoWy)
——

Autoencoder

... with the potential of obtaining richer representations.
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Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8Bx8 B@dxd 20@1x1
|
Convolution Subsampling Convolution Subsampling  Convolution

In many applications the connectivity of neural networks is limited in a
specific way.
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|

Convolution Subsampling Convolution Subsampling  Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

> Weights in the first few layers have smaller support and are
repeated.
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Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8Bx8 B@dxd 20@1x1
|

Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

> Weights in the first few layers have smaller support and are
repeated.

» Subsampling (pooling) is interleaved with standard neural nets
computations.
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Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8Bx8 B@dxd 20@1x1
|

Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

> Weights in the first few layers have smaller support and are
repeated.

» Subsampling (pooling) is interleaved with standard neural nets
computations.

The obtained architectures are called convolutional neural petworks.
‘Résasco, RegIL' 2018



Convolutional layers

Consider the composite representation

P X>F, P=0cgoW,
with
> representation by filtering W : X — F/,
> representation by pooling o : 7' — F.
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Convolutional layers

Consider the composite representation

P X>F, P=0cgoW,
with
> representation by filtering W : X — F/,
> representation by pooling o : 7' — F.

Note: o, W are more complex than in standard NN.

L.Rosasco, RegML 2018
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Convolution and filtering

The matrix W is made of blocks
W == (th, . '7GtT)

each block is a convolution matrix obtained transforming a vector
(template) ¢, e.g.

Gt = (g1t17gNt)

e.g.

Forall z € X,

L.Rosasco, RegML 2018
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Pooling

The pooling map aggregates (pools) the values corresponding to the
same transformed template

(nt,x), ..., ((gnt, @),

and can be seen as a form of subsampling.

L.Rosasco, RegML 2018
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Pooling functions

Given a template ¢, let

B = (5(<glt7x>)’ SRR S(<gNt’ $>)) :

for some non-linearity s, e.g. s(-) = |- |+.
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Pooling functions

Given a template ¢, let

B =(s({git, x)), ..., s((gnt, T))) -
for some non-linearity s, e.g. s(-) = |- |+.
Examples of pooling

> max pooling

» average pooling

» ¢, pooling

NG
181, = | D 1871
j=1

L.Rosasco, RegML 2018
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Why pooling?

The intuition is that pooling can provide some form of robustness and
even invariance to the transformations.

Invariance & selectivity

» A good representation should be invariant to semantically
irrelevant transformations.

» VYet, it should be discriminative with respect to relevant
information (selective).

L.Rosasco, RegML 2018
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Basic computations: simple & complex cells

(Hubel, Wiesel '62)

» Simple cells
T = <xaglt> PRI <xagNt>

» Complex cells

<I7glt>7"‘7<I7gNt>"'7<‘ragNt> — ZHx,gt) |+

L.Rosasco, RegML 2018
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Basic computations: convolutional networks

(Le Cun '88)

» Convolutional filters

T = <$,glt>,...7<l‘,g]\/t>

» Subsampling/pooling

<$7glt>7"'7<xvgNt>""<‘T7gNt> — Z|<.’E,gt> |+

L.Rosasco, RegML 2018
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Deep convolutional networks

Filtering

|

Pooling

|

!

Filtering Pooling \\—> !
§ Output
Input First Second Classifier
Layer Layer
In practice:

» multiple convolution layers are stacked,
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Deep convolutional networks

Filtering

|

Pooling

|

Filtering Pooling \\_’ !
' Output
Input First Second Classifier
Layer Layer

In practice:
» multiple convolution layers are stacked,

» pooling is not global, but over a subset of transformations
(receptive field),
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Deep convolutional networks

Filtering

Filtering Pooling \\—>

Input First Second
Layer Layer

Pooling

|

t

Output
Classifier

In practice:
» multiple convolution layers are stacked,

» pooling is not global, but over a subset of transformations
(receptive field),

» the receptive fields size increases in higher layers.

L.Rosasco, RegML 2018
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A biological motivation

Visual cortex

The processing in DCN has
analogies with computational
neuroscience models of the
information processing in the

visual cortex see [Poggio et al.

1.

Classification
units.

VA4 /PIT

V1/V2

%

\
<§<B

A

@J*Ae
sz

ClGloy ®®®®

:
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Theory

Op(z) =c(Wg...0c(Wa(c(Wix)))

» No pooling: metric properties of networks with random weights —
connection with compressed sensing [Giryes et al. '15]
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Theory

Op(z) =c(Wg...0c(Wa(c(Wix)))

» No pooling: metric properties of networks with random weights —
connection with compressed sensing [Giryes et al. '15]

» Invariance

¥ =gr = &) = d(x)

[Anselmi et al. '12, R. Poggio '15, Mallat '12, Soatto, Chiuso '13]
and covariance for multiple layers [Anselmi et al. '12].
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Theory

Op(z) =c(Wg...0c(Wa(c(Wix)))

No pooling: metric properties of networks with random weights —
connection with compressed sensing [Giryes et al. '15]

Invariance

¥ =gr = &) = d(x)

[Anselmi et al. '12, R. Poggio '15, Mallat '12, Soatto, Chiuso '13]
and covariance for multiple layers [Anselmi et al. '12].

Selectivity/Maximal Invariance, i.e. injectivity modulo

transformations
O(2')=®(z) =2’ =gz

[R. Poggio '15, Soatto, Chiuso '15]

L.Rosasco, RegML 2018
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Theory (cont.)

> Similarity preservation

19(e") — @(2)l| < min ||z — g[|777

> Stability to diffeomorphisms [Mallat, '12]

[ (2) = @(d(2)]| < |l 1]l

» Reconstruction: connection to phase retrieval /one bit compressed
sensing [Bruna et al '14].

L.Rosasco, RegML 2018
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This class

» Neural nets
» Autoencoders

» Convolutional neural nets

L.Rosasco, RegML 2018
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FINE
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