RegML 2018 Class 7 Dictionary learning

Lorenzo Rosasco UNIGE-MIT-IIT

June 18, 2018

Data representation

A mapping of data in new format better suited for further processing

Data representation (cont.)

 X data-space, a **data representation** is a map

$$
\Phi: \mathcal{X} \to \mathcal{F},
$$

to a representation space \mathcal{F} .

Different names in different fields:

- \blacktriangleright machine learning: feature map
- \triangleright signal processing: analysis operator/transform
- \blacktriangleright information theory: encoder
- \triangleright computational geometry: embedding

Supervised or Unsupervised?

Supervised (labelled/annotated) data are expensive!

Ideally a good data representation should reduce the need of (human) annotation. . .

 \rightsquigarrow Unsupervised learning of Φ

Unsupervised representation learning

Samples

$$
S = \{x_1, \ldots, x_n\}
$$

from a distribution ρ on the input space X are available.

What are the **principles** to learn "good" representation in an unsupervised fashion?

Unsupervised representation learning principles

Two main concepts

1. **Reconstruction**, there exists a map $\Psi : \mathcal{F} \to \mathcal{X}$ such that

$$
\Psi \circ \Phi(x) \sim x, \quad \forall x \in \mathcal{X}
$$

2. Similarity preservation, it holds

$$
\Phi(x) \sim \Phi(x') \Leftrightarrow x \sim x', \quad \forall x \in \mathcal{X}
$$

Most unsupervised work has focused on reconstruction rather than on similarity

 \rightarrow We give an overview next

Reconstruction based data representation

Basic idea: the quality of a representation Φ is measured by the reconstruction error provided by an associated reconstruction Ψ

$$
||x - \Psi \circ \Phi(x)||,
$$

Empirical data and population

Given $S = \{x_1, \ldots, x_n\}$ minimize the empirical reconstruction error

$$
\widehat{\mathcal{E}}(\Phi, \Psi) = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \Psi \circ \Phi(x_i)||^2,
$$

as a proxy to the expected reconstruction error

$$
\mathcal{E}(\Phi, \Psi) = \int d\rho(x) \|x - \Psi \circ \Phi(x)\|^2,
$$

where ρ is the data distribution (fixed but uknown).

Empirical data and population

$$
\min_{\Phi,\Psi} \mathcal{E}(\Phi,\Psi), \quad \mathcal{E}(\Phi,\Psi) = \int d\rho(x) \left\| x - \Psi \circ \Phi(x) \right\|^2,
$$

Caveat. . .

But reconstruction alone is not enough...

copying data, i.e. $\Psi \circ \Phi = I$, gives zero reconstruction error!

Dictionary learning

$$
||x - \Psi \circ \Phi(x)||
$$

Let $\mathcal{X} = \mathbb{R}^d$, $\mathcal{F} = \mathbb{R}^p$

1. linear reconstruction

 $\Psi \in \mathcal{D}$,

with D a subset of the space of linear maps from $\mathcal X$ to $\mathcal F$.

2. nearest neighbor representation,

$$
\Phi(x) = \Phi_{\Psi}(x) = \underset{\beta \in \mathcal{F}_{\lambda}}{\arg \min} ||x - \Psi \beta||^2, \qquad \Psi \in \mathcal{D},
$$

where \mathcal{F}_{λ} is a subset of \mathcal{F}_{λ} .

Linear reconstruction and dictionaries

Each reconstruction $\Psi \in \mathcal{D}$ can be identified a **dictionary** matrix with columns

$$
a_1,\ldots,a_p\in\mathbb{R}^d.
$$

The reconstruction of an input $x \in \mathcal{X}$ corresponds to a suitable linear expansion on the dictionary

$$
x = \sum_{j=1}^p a_j \beta_j, \qquad \beta_1, \ldots, \beta_p \in \mathbb{R}.
$$

Nearest neighbor representation

$$
\Phi(x) = \Phi_{\Psi}(x) = \underset{\beta \in \mathcal{F}_{\lambda}}{\arg \min} \|x - \Psi \beta\|^2, \qquad \Psi \in \mathcal{D},
$$

The above representation is called nearest neighbor (NN) since, for

$$
\Psi\in\mathcal{D},\quad \mathcal{X}_{\lambda}=\Psi\mathcal{F}_{\lambda},
$$

the representation $\Phi(x)$ provides the **closest** point to x in \mathcal{X}_{λ} ,

$$
d(x, \mathcal{X}_{\lambda}) = \min_{x' \in \mathcal{X}_{\lambda}} \|x - x'\|^2 = \min_{\beta \in \mathcal{F}_{\lambda}} \|x - \Psi\beta\|^2.
$$

Nearest neighbor representation (cont.)

NN representation are defined by a constrained inverse problem,

$$
\min_{\beta \in \mathcal{F}_{\lambda}} \|x - \Psi \beta\|^2.
$$

Alternatively let $\mathcal{F}_{\lambda} = \mathcal{F}$ and adding a regularization term $R_{\lambda} : \mathcal{F} \to \mathbb{R}$

$$
\min_{\beta \in \mathcal{F}} \left\{ \left\| x - \Psi \beta \right\|^2 + R_{\lambda}(\beta) \right\}.
$$

Dictionary learning

Dictionary learning

- \blacktriangleright learning a regularized representation on a dictionary...
- \blacktriangleright while simultaneously learning the dictionary itself.

Examples

The framework introduced above encompasses a large number of approaches.

- ▶ PCA (& kernel PCA)
- \triangleright KSVD
- \blacktriangleright Sparse coding
- \blacktriangleright K-means
- \blacktriangleright K-flats
- \blacktriangleright ...

Example 1: Principal Component Analysis (PCA)

Let $\mathcal{F}_{\lambda} = \mathcal{F}_{k} = \mathbb{R}^{k}$, $k \leq \min\{n, d\}$, and $\mathcal{D} = {\Psi : \mathcal{F} \rightarrow \mathcal{X}, \text{ linear } | \Psi^* \Psi = I}.$

 $\blacktriangleright \Psi$ is a $d \times k$ matrix with **orthogonal, unit norm** columns,

$$
\Psi \beta = \sum_{j=1}^{k} a_j \beta_j, \quad \beta \in \mathcal{F}
$$

 $\blacktriangleright \Psi^* : \mathcal{X} \to \mathcal{F}, \quad \Psi^* x = (\langle a_1, x \rangle, \dots, \langle a_k, x \rangle), \quad x \in \mathcal{X}$

L.Rosasco, RegML 2018 17

PCA & best subspace

$$
\blacktriangleright \Psi \Psi^* : \mathcal{X} \to \mathcal{X}, \quad \Psi \Psi^* x = \sum_{j=1}^k a_j \langle a_j, x \rangle \,, \quad x \in \mathcal{X}.
$$

 \blacktriangleright $P = \Psi \Psi^*$ is the **projection** $(P = P^2)$ on the subspace of \mathbb{R}^d spanned by a_1, \ldots, a_k .

Rewriting PCA

Note that,

$$
\Phi(x) = \Psi^* x = \underset{\beta \in \mathcal{F}_k}{\arg \min} \|x - \Psi \beta\|^2, \quad \forall x \in \mathcal{X},
$$

so that we can rewrite the PCA minimization as

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^{n} ||x - \Psi \Psi^* x_i||^2.
$$

Subspace learning

The problem of finding a k −dimensional orthogonal projection giving the best reconstruction.

PCA computation

Let \hat{X} the $n \times d$ data matrix and $C = \frac{1}{n}\hat{X}^T\hat{X}$.

 \ldots PCA optimization problem is solved by the eigenvector of C associated to the K largest eigenvalues.

Learning a linear representation with PCA

Subspace learning

The problem of finding a k −dimensional orthogonal projection giving the best reconstruction.

PCA assumes the support of the data distribution to be well approximated by a low dimensional linear subspace

L.Rosasco, RegML 2018 21

PCA beyond linearity

PCA beyond linearity

PCA beyond linearity

Kernel PCA

Consider

$$
\phi: \mathcal{X} \to \mathcal{H}
$$
, and $K(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$

a feature map and associated (reproducing) kernel. We can consider the empirical reconstruction in the feature space,

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^n \min_{\beta_i \in \mathcal{H}} \|\phi(x_i) - \Psi\beta_i\|_{\mathcal{H}}^2.
$$

Connection to manifold learning. . .

Examples 2: Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to

$$
\mathcal{F} = \mathbb{R}^p,
$$

\n
$$
\mathcal{F} \geq d, \mathcal{F}_{\lambda} = \{ \beta \in \mathcal{F} : ||\beta||_1 \leq \lambda \}, \quad \lambda > 0,
$$

\n
$$
\mathcal{D} = \{ \Psi : \mathcal{F} \to \mathcal{X} \mid ||\Psi e_j||_{\mathcal{F}} \leq 1 \}.
$$

Hence,

Sparse coding (cont.)

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^{n} \min_{\beta_i \in \mathbb{R}^p, \|\beta_i\| \leq \lambda} \|x_i - \Psi \beta_i\|^2
$$

- \blacktriangleright The problem is not convex... but it is separately convex in the β_i 's and $\Psi.$
- \blacktriangleright An alternating minimization is fairly natural (other approaches possible–see e.g. [Schnass '15, Elad et al. '06])

Representation computation

Given a dictionary, the problems

$$
\min_{\beta \in \mathcal{F}_{\lambda}} ||x_i - \Psi \beta||^2, i = 1, \dots, n
$$

are convex and correspond to a **sparse representation** problems.

They can be solved using convex optimization techniques. Splitting/proximal methods

 $\beta_0, \quad \beta_{t+1} = T_{\gamma,\lambda}(\beta_t - \gamma \Psi^*(x_i - \Psi \beta_t)), \quad t = 0, \ldots, T_{\text{max}}$

with T_{λ} the soft-thresholding operator,

Dictionary computation

Given $\Phi(x_i) = \beta_i$, $i = 1, \ldots, n$, we have

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^{n} ||x_i - \Psi \circ \Phi(x_i)||^2 = \min_{\Psi \in \mathcal{D}} \frac{1}{n} ||\hat{X} - B^* \Psi||_F^2,
$$

where B is the $n \times p$ matrix with rows β_i , $i = 1, \ldots, n$ and we denoted by $\left\| \cdot \right\|_F$, the Frobenius norm.

It is a convex problem, solvable via standard techniques. Splitting/proximal methods

$$
\Psi_0, \quad \Psi_{t+1} = P(\Psi_t - \gamma_t B^*(X - \Psi B)), \quad t = 0, \dots, T_{\text{max}}
$$

where P is the projection corresponding to the constraints,

$$
\begin{array}{rcl} P(\Psi^j) &=& \Psi^j / \left\| \Psi^j \right\|, \quad \text{if } \left\| \Psi^j \right\| > 1 \\ P(\Psi^j) &=& \Psi^j, \quad \text{if } \left\| \Psi^j \right\| \leq 1. \end{array}
$$

Sparse coding model

- \triangleright Sparse coding assumes the support of the data distribution to be a union of $\binom{p}{s}$ subspaces, i.e. all possible s dimensional subspaces in \mathbb{R}^p , where s is the sparsity level.
- \triangleright More general penalties, more general geometric assumptions.

Example 3: K-means & vector quantization

K-means is typically seen as a **clustering** algorithm in machine learning... but it is also a classical vector quantization approach.

Here we revisit this point of view from a data representation perspective.

K-means corresponds to

 $\blacktriangleright \mathcal{F}_\lambda = \mathcal{F}_k = \{e_1, \ldots, e_k\}$, the canonical basis in \mathbb{R}^k , $k \leq n$ \triangleright $\mathcal{D} = {\Psi : \mathcal{F} \rightarrow \mathcal{X} \mid \text{linear}}.$

K-means computation

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^{n} \min_{\beta_i \in \{e_1, ..., e_k\}} ||x_i - \Psi \beta_i||^2
$$

The K-means problem is not convex.

Alternating minimization

- 1. Initialize dictionary Ψ_0 .
- 2. Let $\Phi(x_i) = \beta_i$, $i = 1, ..., n$ be the solution of the problems

$$
\min_{\beta \in \{e_1, ..., e_k\}} ||x_i - \Psi \beta||^2, \quad i = 1, ..., n.
$$

with $V_i = \{x \in S \mid \Phi(x) = e_i\}$, (multiple points have same representation since $k \leq n$).

3. Letting $a_j = \Psi e_j$, we can write

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^{n} \|x_i - \Psi \circ \Phi(x_i)\|^2 = \min_{a_1, ..., a_k \in R^d} \frac{1}{n} \sum_{j=1}^{k} \sum_{x \in V_j} \|x - a_j\|^2.
$$

L.Rosasco, RegML 2018 32

Step 2: assignment

The discrete problem

$$
\min_{\beta \in \{e_1, ..., e_k\}} \|x_i - \Psi \beta\|^2, \quad i = 1, ..., n.
$$

can be seen as an assignment step.

Clusters

The sets

$$
V_j = \{ x \in S \mid \Phi(x) = e_j \},
$$

are called **Voronoi** sets and can be seen as data **clusters**.

L.Rosasco, RegML 2018 33

Step 3: centroid computation

Consider

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^{n} \|x_i - \Psi \circ \Phi(x_i)\|^2 = \min_{a_1, ..., a_k \in R^d} \frac{1}{n} \sum_{j=1}^{k} \sum_{x \in V_j} \|x - a_j\|^2,
$$

where $a_j = \Psi e_j$.

The minimization with respect to each column is independent to all others.

Centroid computation

$$
c_j = \frac{1}{|V_j|} \sum_{x \in V_j} x = \argmin_{a_j \in \mathbb{R}^d} \sum_{x \in V_j} ||x - a_j||^2, \quad j = 1, \dots, k.
$$

K-means convergence

The computational procedure described before is known as Lloyd's algorithm.

- \triangleright Since it is an alternating minimization approach, the value of the objective function can be shown to **decrease** with the iterations.
- \triangleright Since there is only a finite number of possible partitions of the data in k clusters, Lloyd's algorithm is ensured to **converge to a local** minimum in a finite number of steps.

K-means initialization

Convergence to a **global** minimum can be ensured (with high probability), provided a suitable initialization.

K-means++ [Arthur, Vassilvitskii;07]

- 1. Choose a centroid uniformly at random from the data,
- 2. Compute distances of data to the nearest centroid already chosen.
- 3. Choose a new centroid from the data using probabilities proportional to such distances (squared).
- 4. Repeat steps 2 and 3 until k centers have been chosen.

K-means & piece-wise representation

- \blacktriangleright k-means representation: extreme sparse representation, only one non zero coefficient (vector quantization).
- \blacktriangleright k-means reconstruction: **piecewise constant** approximation of the data, each point is reconstructed by the nearest mean.

This latter perspective suggests extensions of k-means considering higher order data approximation such as, e.g. piecewise linear.

[Bradley, Mangasarian '00, Canas, R.'12]

- \blacktriangleright k-flats representation: structured sparse representation, coefficients are projection on a flat.
- \blacktriangleright k-flats reconstruction: **piecewise linear** approximation of the data, each point is reconstructed by projection on the nearest flat.

Remarks on K-flats K-Flats illustrated

- \blacktriangleright Principled way to **enrich** k-means representation (cfr softmax).
- \blacktriangleright Geometric structured dictionary learning.
- \blacktriangleright Non-local approximations.

K-flats computations

Alternating minimization

- 1. **Initialize** flats Ψ_1, \ldots, Ψ_k .
- 2. Assign point to nearest flat,

$$
V_j = \{ x \in \mathcal{X} \mid ||x - \Psi_j \Psi_j^* x|| \le ||x - \Psi_t \Psi_t^* x||, \ t \neq j \}.
$$

3. **Update** flats by computing (local) PCA in each cell V_j , $j = 1, ..., k$.

Kernel K-means & K-flats

It is easy to extend K-means & K-flats using kernels.

$$
\phi: \mathcal{X} \to \mathcal{H}
$$
, and $K(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$

Consider the empirical reconstruction problem in the feature space,

$$
\min_{\Psi \in \mathcal{D}} \frac{1}{n} \sum_{i=1}^n \min_{\beta_i \in \{e_1, \dots, e_k\} \subset \mathcal{H}} \|\phi(x_i) - \Psi\beta_i\|_{\mathcal{H}}^2.
$$

Note: Easy to see that computation can be performed in closed form

- \blacktriangleright Kernel k-means: distance computation.
- \blacktriangleright Kernel k-flats: distance computation+local KPCA.

Geometric Wavelets (GW)- Reconstruction Trees

- \triangleright Select (rather than compute) a partition of the data-space
- **•** Approximate the point in each cell via a vector/plane.

multi-scale

Selection via **multi-scale/coarse-to-fine** pruning of a partition tree [Maggioni et al...]

K-means/flats and GW

- \triangleright Can be seen as piecewise representations.
- \triangleright The data model is a manifold– limit when the number of pieces goes to infinity
- \triangleright GMRA is local (cells are connected) while K-Flats is not...
- I ... but GMRA is multi-scale while K-flats is not...

Dictionary learning & matrix factorization

PCA,Sparse Coding, K-means/flats, Reconstruction trees are some examples of methods based on

In fact, under mild conditions the above problem is a special case of Matrix Factorization:

If the minimizations of the β_i 's are independent, then

$$
(P1) \Leftrightarrow \min_{B,\Psi} \left\| \widehat{X} - \Psi B \right\|_F^2
$$

where B has columns $(\beta_i)_i$, X data matrix, and $\left\| \cdot \right\|_F$ is the Frobenius norm.

The equivalence holds for all the methods we saw before!

L.Rosasco, RegML 2018 44

From reconstruction to similarity

We have seen two concepts emerging

- \blacktriangleright parsimonious reconstruction
- \blacktriangleright similarity preservation

What about similarity preservation?

Randomized linear representation

Consider randomized representation/reconstruction given by a set of random templates smaller then data dimension, that is

$$
a_1, \ldots, a_k, \quad k < d.
$$

Consider $\Phi: \mathcal{X} \to \mathcal{F} = \mathbb{R}^k$ such that

$$
\Phi(x) = Ax = (\langle x, a_1 \rangle, \dots, \langle x, a_k \rangle), \quad \forall x \in \mathcal{X},
$$

with A random i.i.d. matrix, with rows a_1, \ldots, a_k

Johnson-Lindenstrauss Lemma

The representation $\Phi(x) = Ax$ defines a stable embedding, i.e.

$$
(1 - \epsilon) \|x - x'\| \le \|\Phi(x) - \Phi(x')\| \le (1 + \epsilon) \|x - x'\|
$$

with high probability and for all $x, x' \in \mathcal{C} \subset \mathcal{X}$. The precision ϵ depends on : 1) number of random atoms k, 2) the set C

Example:

If C is a finite set $|C| = n$, then

$$
\epsilon \sim \sqrt{\frac{\log n}{k}}.
$$

Metric learning

Metric learning Find $D: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ such that

$$
x \text{ similar } x' \Leftrightarrow D(x, x')
$$

- 1. How to parameterize D ?
- 2. How we know whether data points are similar?
- 3. How do we turn all into an optimization problem?

Metric learning (cont.)

1. How to parameterize D ?

Mahalanobis $D(x, x') = \langle x - x', M(x - x') \rangle$ where M symmetric PD, or rather $\Phi(x) = Bx$ with $M = B^*B$ (using kernels possible).

2. How to know whether points are similar? Most works assume supervised data

 $(x_i, x_j, y_{i,j})_{i,j}.$

3. How to turn all into an optimization problem? Extension of classification algorithms such as **support vector** machines.

This class

 \blacktriangleright dictionary learning \blacktriangleright metric learning

Next class

Deep learning!