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Learning from data

Possible only under assumptions → regularization

min
w
Ê(w) + λR(w)

I Smoothness

I Sparsity
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Sparsity

The function of interest depends on few building blocks
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Why sparsity

I Interpretability

I High dimensional statistics

I Compression
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What is sparsity?

f(x) =

d∑
j=1

xjwj

Sparse coefficients: few wj 6= 0
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Sparsity and dictionaries

More generally consider

f(x) =

p∑
j=1

φj(x)wj

with φ1, . . . , φp dictionary.

The concept of sparsity requires depends on the considered dictionary.
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Linear inverse problem

n < d more variables than observations
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Sparse regularization

min
w

1

n
‖X̂w − ŷ‖2 + λ��

�*
‖w‖0

‖w‖22

`0-norm

‖w‖0 =

d∑
j=1

1{wj 6=0}
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Best subset selection

min
w

1

n
‖X̂w − ŷ‖2 + λ‖w‖0

as hard as trying all possible subsets. . .

1. Greedy methods

2. Convex relaxations
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Greedy methods

Initalize, then

I Select a variable

I Compute solution

I Update

I Repeat
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Matching pursuit

r0 = ŷ, w0 = 0, I0 = ∅

for i = 1 to T

I Let X̂j = X̂ej , and select j ∈ {1, . . . , d} maximizing 1

aj =
v2j

‖X̂j‖2
, with vj = r>i−1X̂j

I Ii = Ii−1 ∪ {j},
I wi = wi−1 + vjej

I ri = ri−1 − X̂wi

1Note that

vj = argmin
v∈R

‖X̂jv − ri−1‖2, and, aj = ‖X̂jvj − ri−1‖2
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Orthogonal Matching pursuit

r0 = ŷ, w0 = 0, I0 = ∅

for i = 1 to T

I Select j ∈ {1, . . . , d} which maximizes

v2j

‖X̂ej‖2
, with vj = r>i−1X̂ej

I Ii = Ii−1 ∪ {j},
I wi = argminw ‖X̂MIiw − ŷ‖2, where (MIiw)j = δj∈Iiwj

I ri = ri−1 − X̂wi
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Convex relaxation

min
w

1

n
‖X̂w − ŷ‖2 + λ�

��*
‖w‖1

‖w‖22

`1-norm

‖w‖1 =

d∑
i=1

|wi|

I Modeling

I Optimization
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The problem of sparsity

min ‖w‖1, s.t. X̂w = ŷ
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Ridge Regression and sparsity

Replace ‖w‖1 with ‖w‖2?
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Unlike ridge-regression, `1 regularization leads to sparsity!
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Sparse regularization

min
w

1

n
‖X̂w − ŷ‖2 + λ‖w‖1

I Called Lasso or Basis Pursuit

I Convex but not smooth
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Optimization

I Could be solved via the subgradient method

I Objective function is composite

min
w

1

n
‖X̂w − ŷ‖2︸ ︷︷ ︸

convex smooth

+λ ‖w‖1︸ ︷︷ ︸
convex
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Proximal methods

min
w
E(w) +R(w)

Let

ProxR(w) = min
v

1

2
‖v − w‖2 +R(v)

and, for w0 = 0

wt = ProxγR(wt−1 − γ∇E(wt−1))
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Proximal Methods (cont.)

min
w
E(w) +R(w)

Let R : Rp → R convex continuous and E : Rp → R differentiable,
convex and such that

‖∇E(w)−∇E(w′)‖ ≤ L‖w − w′‖

(e.g. supw ‖H(w)︸ ︷︷ ︸
hessian

‖ ≤ L), Then for γ = 1/L,

wt = ProxγR(wt−1 − γ∇E(wt−1))

converges to a minimizer of E +R.
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Soft thresholding

R(w) = λ‖w‖1

(Proxλ‖·‖1(w))j =


wj − λ wj > λ

0 wj ∈ [−λ, λ]
wj + λ wj < −λ
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ISTA

wt+1 = Proxγλ‖·‖1(wt −
γ

n
X̂>(X̂wt − ŷ))

(Proxγλ‖·‖1(w))
j =


wj − γλ wj > γλ

0 wj ∈ [−γλ, γλ]
wj + γλ wj < −γλ

Small coefficients are set to zero!
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Back to inverse problems

X̂w∗ + δ = ŷ

If xi i.i.d. random and

n ≥ 2s log
d

s

then `1 regularization reaches w∗
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Sampling theorem

2ω0 samples needed
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LASSO

min
w

1

n
‖X̂w − ŷ‖2 + λ‖w‖1

I Interpretability: variable selection!
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Variable selection and correlation

min
w

1

n
‖X̂w − ŷ‖2 + λ‖w‖1︸ ︷︷ ︸
���strictly convex

Cannot handle corre-
lations between the
variables
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Elastic net regularization

min
w

1

n
‖X̂w − ŷ‖2 + λ(α‖w‖1 + (1− α)‖w‖2)
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ISTA for elastic net

wt+1 = Proxγλα‖·‖1(wt − γ
2

n
X̂>(X̂wt − ŷ)− γλ(1− α)wt−1)

(Proxγλα‖·‖1(w))
j =


wj − γλα wj > γλα

0 wj ∈ [−γλα, γλα]
wj + γλα wj < −γλα

Small coefficients are set to zero!

L.Rosasco, RegML 2018
28



Grouping effect

Strong convexity

=⇒ All relevant (possibly correlated) variables are selected
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Elastic net and `p norms
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2
‖w‖1 +

1

2
‖w‖2 = 1
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(

d∑
j=1

|wj |p)1/p = 1

`p norms are similar to elastic net but they are smooth (no “kink”!)
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This Class

I Sparsity

I Geometry

I Computations

I Variable selection and elastic net
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Next Class

I Structured Sparsity
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