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All starts with DATA

I Supervised: {(x1, y1), . . . , (xn, yn)},

I Unsupervised: {x1, . . . , xm},

I Semi-supervised: {(x1, y1), . . . , (xn, yn)} ∪ {x1, . . . , xm}
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Learning from examples

? ?

? ?

Problem: given Sn = {(x1, y1), . . . , (xn, yn)} find f(xnew) ∼ ynew
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Setting for the supervised learning problem

I X × Y probability space, with measure ρ.

I Sn = (x1, y1), . . . , (xn, yn) ∼ ρn, i.e. sampled i.i.d.

I L : Y × Y → [0,∞), measurable loss function.

I Expected risk

E(f) =

∫
X×Y

L(y, f(x))dρ(x, y).

Problem: Solve
min

f :X→Y
E(f),

given only Sn (ρ fixed, but unknown).
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Data space

X︸︷︷︸
input space

Y︸︷︷︸
output space
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Input space

X input space:

I linear spaces, e. g.

– vectors,
– functions,
– matrices/operators

I “structured” spaces, e. g.

– strings,
– probability distributions,
– graphs
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Output space

Y output space

I linear spaces, e. g.

– Y = R, regression,
– Y = RT , multi-task regression,
– Y Hilbert space, functional regression,

I “structured” spaces

– Y = {+1,−1}, classification,
– Y = {1, . . . , T}, multi-label classification,
– strings,
– probability distributions,
– graphs
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Probability distribution

Reflects uncertainty and stochasticity of the learning problem

ρ(x, y) = ρX(x)ρ(y|x),

I ρX marginal distribution on X,

I ρ(y|x) conditional distribution on Y given x ∈ X.
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Conditional distribution and noise

f⇤

(x2, y2)

(x3, y3)

(x4, y4)
(x5, y5)(x1, y1)

Regression

yi = f∗(xi) + εi,

I Let f∗ : X → Y , fixed function

I ε1, . . . , εn zero mean random variables

I x1, . . . , xn random
L.Rosasco, RegML 2018



Conditional distribution and misclassification

Classification
ρ(y|x) = {ρ(1|x), ρ(−1|x)},

1

0.9

Noise in classification: overlap between the classes

∆t =
{
x ∈ X

∣∣∣ ∣∣ρ(1|x)− ρ(−1|x)
∣∣ ≤ t}
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Marginal distribution and sampling

ρX takes into account uneven sampling of the input space
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Marginal distribution, densities and manifolds

p(x) =
dρX(x)

dx
→ p(x) =

dρX(x)

dvol(x)
,
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Loss functions

L : Y × Y → [0,∞),

I The cost of predicting f(x) in place of y.

I Part of the problem definition E(f) =
∫
L(y, f(x))dρ(x, y)

I Measures the pointwise error,
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Losses for regression

L(y, y′) = L(y − y′)

I Square loss L(y, y′) = (y − y′)2,

I Absolute loss L(y, y′) = |y − y′|,
I ε-insensitive L(y, y′) = max(|y − y′| − ε, 0),
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Losses for classification

L(y, y′) = L(−yy′)

I 0-1 loss L(y, y′) = 1{−yy′>0}
I Square loss L(y, y′) = (1− yy′)2,

I Hinge-loss L(y, y′) = max(1− yy′, 0),

I logistic loss L(y, y′) = log(1 + exp(−yy′)),
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Losses for structured prediction

Loss specific for each learning task e. g.

I Multi-class: square loss, weighted square loss, logistic loss, . . .

I Multi-task: weighted square loss, absolute, . . .

I . . .
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Expected risk

E(f) = EL(f) =

∫
X×Y

L(y, f(x))dρ(x, y)

note that f ∈ F where

F = {f : X → Y | f measurable}.

Example Y = {−1,+1}, L(y, f(x)) = 1{−yf(x)>0}

E(f) = P({(x, y) ∈ X × Y | f(x) 6= y}).
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Target function

fρ = arg min
f∈F

E(f),

can be derived for many loss functions...
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Target functions in regression

square loss,

fρ(x) =

∫
Y

ydρ(y|x)

absolute loss,
fρ(x) = median ρ(y|x),

where

median p(·) = y s.t.

∫ y

−∞
tdp(t) =

∫ +∞

y

tdp(t).
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Target functions in classification

0-1 loss,
fρ(x) = sign(ρ(1|x)− ρ(−1|x))

square loss,
fρ(x) = ρ(1|x)− ρ(−1|x)

logistic loss,

fρ(x) = log
ρ(1|x)

ρ(−1|x)

hinge-loss,
fρ(x) = sign(ρ(1|x)− ρ(−1|x))
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Learning algorithms

Sn → f̂n = f̂Sn

fn estimates fρ given the observed examples Sn

How to measure the error of an estimator?
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Excess risk

Excess Risk:
E(f̂)− inf

f∈F
E(f),

Consistency: For any ε > 0

lim
n→∞

P
(
E(f̂)− inf

f∈F
E(f) > ε

)
= 0,
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Tail bounds, sample complexity and error bound

I Tail bounds: For any ε > 0, n ∈ N

P
(
E(f̂)− inf

f∈F
E(f) > ε

)
≤ δ(n,F , ε)

I Sample complexity: For any ε > 0, δ ∈ (0, 1], when n ≥ n0(ε, δ,F)

P
(
E(f̂)− inf

f∈F
E(f) > ε

)
≤ δ,

I Error bounds: For any δ ∈ (0, 1], n ∈ N, with probability at least
1− δ,

E(f̂)− inf
f∈F
E(f) ≤ ε(n,F , δ),
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Error bounds and no free-lunch theorem

Theorem For any f̂ , there exists a problem for which

E(E(f̂)− inf
f∈F
E(f)) > 0
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No free-lunch theorem continued

Theorem For any f̂ , there exists a ρ such that

E(E(f̂)− inf
f∈F
E(f)) > 0

F → H Hypothesis space
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Hypothesis space

H ⊂ F

E.g. X = Rd

H = {f(x) = 〈w, x〉 =

d∑
j=1

wjxj , | w ∈ Rd,∀x ∈ X}

then H w Rd.
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Finite dictionaries

D = {φi : X → R | i = 1, . . . , p}

H = {f(x) =

p∑
j=1

wjφj(x) | w1, . . . , wp ∈ R,∀x ∈ X}

f(x) = w>Φ(x), Φ(x) = (φ1(x), . . . , φp(x))
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This class

Learning theory ingredients

I Data space/distribution

I Loss function, risks and target functions

I Learning algorithms and error estimates

I Hypothesis space
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Next class

I Regularized learning algorithm: penalization

I Statistics and computations

I Nonparametrics and kernels
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