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CLASSICAL MODEL FOR LEARNING

I Each training data point stored as a d-vector
I Training collection X = (x1, . . . , xn) seen as a (d ,n) matrix

I Usual abstract approach (decision theory):
I Want to find a predictor (“hypothesis”) h ∈ H suited to data
I Performance on data point x measured by loss function `(x , h)
I Goal is to minimize averaged loss and approximate the minimizer

h∗ = ArgMin
h∈H

R(h) = ArgMin
h∈H

E[`(X , h)]

I Assuming (x1, . . . , xn) are drawn i.i.d., natural proxy is empirical risk
minimizer

ĥERM = min
h∈H

R̂(h) = min
h∈H

1
n

n∑
i=1

`(xi , h)

(can possibly be combined with regularization)
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CLASSICAL FRAMEWORK

h ∈ H

R̂(h) = 1
n
∑n

i=1 `(xi ,h)

x1

x2

x3

xn

h ∈ H

Data Learning

Arg Min

I Storage cost: O(nd)

I Computation cost: O((nd)κ)

I Stochastic gradient can improve computation bottlenecks but usually
requires several data passes
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SKETCHED LEARNING APPROACH

(= 1
n

∑n
i=1 Φ1(xi))

x1

x2

x3

xn

Learn?

Data

Arg Min R̂(h)
h ∈ H

h ∈ H
X → R

Φ1,Φ2, . . . ,Φm

Ê[Φm(X )]

Sketch

(Empirical moments)

Ê[Φ1(X )]

Ê[Φ2(X )]

I Storage cost after sketching: O(m)
I Computation cost: hopefully polynomial in m
I Sketch can be updated very easily
I Which moments Φi? How large should m be?
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FIRST CONSIDERATIONS

I In the classical approach, learning theory guarantees are of the form

sup
h∈H

∣∣∣R(h)− R̂(h)
∣∣∣ ≤ ε(n) ,

with high probability, e.g. ε(n) = O
(√

γ
n

)
for a hypothesis space of

metric dimension γ.

I This implies that the ERM estimator satisfies the risk bound

R(ĥERM) ≤ R(h∗) + ε(n).

I To preserve this property up to constant factor for an estimator
h̃Sketched it is sufficient to ensure that∣∣∣R(ĥERM)−R(h̃Sketched )

∣∣∣ . sup
h∈H

∣∣∣R(h)− R̂(h)
∣∣∣.
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A NAIVE APPROACH

I A first thought is to discretize the hypothesis space into h1, . . . ,hm
and take Φi (x) = `(x ,hi ), i = 1, . . . ,m.

I Then we simply have

E[Φi (X )] =
1
n

n∑
j=1

`(xj ,hi ) = R̂(hi ), i = 1, . . . ,m.

I With the moment information, we can replace ERM by “discretized
ERM” over h1, . . . ,hm.

I To ensure
∣∣∣R(ĥERM)−R(h̃disc.ERM)

∣∣∣ ≤ ε(n), require (h1, . . . ,hm) to
be an ε(n)-covering of the space H (say for supremum norm).

I If H is of metric dimension γ a covering typically requires
m = O(ε−γ) = O(nγ/2) , seems hopeless!
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SOME HOPE (1)

I Consider “trivial” example `(x ,h) = ‖x − h‖2, goal is to learn mean
h∗ = E[X ]; obviously only need to store only the empirical mean
Ê[h(X )] = 1

n

∑n
i=1 xi i.e. m = 1!

I Can this phenomenon be generalized?
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SOME HOPE (2)

I Example 2: PCA. Since we only need the estimated (covariance)
matrix to find PCA directions, we only need to keep moments of
order 2 (m = O(d2)).

I We can even hope do to better by using low-rank approximations of
the covariance. Using random projections on Gaussian vectors is a
well-known mean to this goal.
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TOWARDS SKETCHED CLUSTERING

I Example 3: We will be interested in learning goals where the target
cannot be easily represented in terms of moments, i.e.
k -means/k -medians.
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AN ABSTRACT FRAMEWORK

I Let M denote the set of probability measures on X = Rd .
I Define the Risk Operator

R(π,h) = EX∼π[`(X ,h)].

Note that the empirical risk is

R̂(h) = R(π̂n,h), with π̂n =
1
n

n∑
i=1

δxi (empirical measure).

I Observe that R(π,h) is linear in π.

I Given Φ(x) = (Φ1(x), . . . ,Φm(x)) define the sketching operator

AΦ(π) = EX∼π[Φ(X )].

The data sketch is s = Ê[Φ(X )] = AΦ(π̂n).
I Note that AΦ is a linear operator on probability measures.
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APPROACH (FORMAL VERSION)

I Sketch step:
s = Aφ(π̂n) ∈ Rm.

I Reconstruction (“decoding”) from sketch step:

s 7→ ∆[s] =: π̃ ∈M.

This formally reconstructs a probability distribution π̃ by applying the
“decoder” ∆ to the sketch.

I Approximate learning step:

h̃ = ArgMin
h∈H

R(π̃,h).
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GOAL FOR THEORY

I Remember from initial considerations we aim (ideally) at∣∣∣R(ĥERM , π)−R(h̃Sketched , π)
∣∣∣ . sup

h∈H
|R(h, π)−R(h, π̂n)|.

I Since ĥERM and h̃Sketched are two ERMs based on the true empirical
π̂n and its reconstruction π̃, a sufficient condition for the above is

sup
h∈H
|R(h, π)−R(h, π̃)| . sup

h∈H
|R(h, π)−R(h, π̂n)|.

Using notation ‖ρ‖L(H) := suph∈H|R(h, ρ)|, rewrite as

‖π −∆(AΦ(π′))‖L(H) . ‖π − π
′‖L(H) .

I Since the reconstruction is obtained from the sketch information only,
it is reasonable to aim at

‖π −∆(AΦ(π′))‖L(H) . ‖AΦ(π − π′)‖2 .
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∣∣∣ . sup

h∈H
|R(h, π)−R(h, π̂n)|.
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ABSTRACT COMPRESSION/DECODING RESULTS

I Assume we have a “model” S ⊂M so that the sketching operator
satisfies the following lower restricted isometry property:

∀π, π′ ∈ S ‖π − π′‖L(H) ≤ CA‖A(π − π′)‖2 . (LRIP)

I Then the “ideal decoder”

∆(s) = ArgMin
π∈S

‖s −A(π)‖2

satisfies the following instance optimality property for any π, π′:

‖π −∆(A(π′))‖L(H) . d(π,S) + ‖A(π − π′)‖2 ,

with
d(π,S) = inf

σ∈S

(
‖π − σ‖L(H) + 2CA‖A(π − σ)‖2

)
.

I (Conversely, the above property implies a LRIP inequality).
(Bourrier et al, 2014)
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BLUEPRINT FOR SKETCHED LEARNING METHOD

I Define suitable restricted model for distributions S. Generally it
should include distributions whose risk vanishes.

I Find suitable sketching dimension m and features Φ so that the
corresponding sketching operator AΦ satisfies a LRIP inequality,
restricted to model S.

I Define the ideal decoder from sketch s

∆(s) = ArgMin
π∈S

‖s −AΦ(π)‖2 .

I For theory: interpret the resulting instance optimality bound in terms
of the learning risk.

I For practice: find suitable approximation of the ideal decoder if it is
computationally too demanding.
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WARM UP: SKETCHED PCA

I The risk is the PCA reconstruction error

RPCA(π,h) = EX∼π

[
‖X − PhX‖2

2

]
,

where hypothesis space H = linear subspaces of dimension k and
Ph = orthogonal projector onto h.

I To construct AΦ, use a linear operatorM to Rm satisfying the RIP

1− δ ≤
‖M(M)‖2

2

‖M‖2
Frob

≤ 1 + δ

for all matrices M of rank less than k .
(m = O(kd) using random linear operator, Candès and Plan 2011)

I Sketch: AΦ(π̂n) =M(Σ̂n) (applyM to empirical covar. matrix Σ̂.)
I Reconstruct from a sketch s: find

Σ̃ = ArgMin
rank(M)≤k

‖s −M(M)‖2 .

I Output: h̃ = space spanned by k first eigenvectors of Σ̃.
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THEORETICAL GUARANTEE

For any distribution π on B(0,R), we have the bound (w.h.p. over data
sampling)

RPCA(π, h̃)−RPCA(π,h∗) ≤ C

(
√

kRPCA(π,h∗) + R2

√
k
n

)
.

I independent of total data dimension
I the first factor

√
k may be spared using more precise results from

low rank matrix sensing (also convex relaxation of reconstruction
program for better computational efficiency)
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SKETCHED CLUSTERING: SETTING

I Consider k -means or k -medians. Assume data is bounded by R.

I Hypothesis space: H = Hk,2ε,R , set of cluster centroids
h = (c1, . . . , ck ) that are R-bounded and pairwise 2ε-separated.

I Loss function
`(x ,h) = min

1≤i≤k
‖x − ci‖p

2 ,

with p = 1 for k -medians, p = 2 for k -means.

I Restricted model: S = Sk,2ε,R set of k -point distributions whose
support is in Hk,2ε,R .
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SKETCHED CLUSTERING: SKETCHING

I Fourier features: consider scaled Fourier features

Φω(x) =
Cω√

m
eiωt x ,

where Cω ' d/((1 + ε‖ω‖) log k).

I Random frequency vectors: draw ω1, . . . , ωm i.i.d. in Rd from the
distribution with density

Λ(ω) ∝ (1 + ε2‖ω‖2) exp(−ε2‖ω‖2
/(2 log k)) .

I The sketching operator AΦ corresponds to the random Fourier
features (Φωi ), i = 1, . . . ,m.
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SKETCHED CLUSTERING: RECONSTRUCTION

I Reconstruct from a sketch s: find

π̃ = ArgMin
π∈Sk,2ε,R

‖s −AΦ(π)‖2 .

I Output: centroids given by support of π̃.

I Theoretical guarantee on reconstruction: if

m ≥ k2d3polylog(k ,d) log
(

R
ε

)
,

then for any distribution π on B(0,R), with high probability on the
draw of frequencies and of the data, it holds

R(π, h̃)−R(π,h∗) .
Rp
√

k log k
ε

R(π,h∗)
1
p +

Rpd
√

k log k√
n

.
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SKETCHED CLUSTERING: EXPERIMENTS

Simplifications (or cut corners. . . ) for experiments:

I Use regular Gaussian density for frequency drawing (no weighting)
I Use heuristic greedy search for the reconstruction operator
I Ignore the 2ε-separation constraint for reconstruction
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SKETCHED CLUSTERING: EXPERIMENTS

Data: mixture of 10 Gaussians with uniform weights and centers drawn
from a Gaussian
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SKETCHED CLUSTERING: EXPERIMENTS
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OUTLINE

1 The sketched learning approach

2 A framework for sketched learning

3 Two examples
Sketched PCA
Sketched clustering

4 How to construct a sketching operator
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

I Core of approach: finding a sketching operator AΦ satisfying LRIP.

I Use as intermediary a kernel Hilbert norm ‖.‖κ satisfying LRIP:

∀π, π′ ∈ S ‖π − π′‖L(H) . ‖π − π
′‖κ,

where κ is a reproducing kernel and ‖π‖2
κ = EX ,X ′∼π⊗2 [κ(X ,X ′)].

I Assume on the other hand the following representation holds:

κ(x , x ′) = Eω∼Λ

[
φω(x)φω(x ′)

]
,

where (φω) is a family of complex-valued feature functions.

I Strategy: sample random features ωi ∼ Λ, ensuring (w.h.p.) the
corresponding sketching operator delivers good enough
approximation to ‖.‖κ i.e.

∀π, π′ ∈ S ‖π − π′‖κ . ‖AΦ(π − π′)‖2 .
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DIMENSION OF SKETCH REQUIRED

I Uniform approximation of the kernel norm by the sketching norm
obtained via Bernstein’s inequality + covering argument on the
normalized secant set

S‖.‖κ(S) =

{
π − π′

‖π − π′‖κ

∣∣∣π, π′ ∈ S

}
.

I More precisely we find the sufficient condition

m & logN (S‖.‖κ(S),dF ,1/2) ,

where dF (π, π′) = supω
∣∣∣|EX∼π[Φω(X )]|2 − |EX∼π′ [Φω(X )]|2

∣∣∣ .
I Finally, the vectorial form of Bernstein’s inequality can be used again

(this time on the data) to control the estimation noise ‖AΦ(π − π̂n)‖2.
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APPLICATION TO MIXTURES AND CLUSTERING

Overview of remaining steps to obtain bound on risk and sketch
dimension:

I Establish the LRIP between the risk norm ‖.‖L(H) and the kernel
norm ‖.‖κ on the model S.

I Results obtained for general family of RBF-type kernels and models
given by k -mixtures of distributions

I Bound the (log) covering numbers: requires some classical
inequalities between covering numbers

I Once the instance optimality inequality is obtained, relate back the
terms of the bound to the learning task (learning risk).
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CONCLUSION

I The sketched learning framework holds promise to reduce
computation and memory burden

I General theoretical framework based on:
I LRIP/compressed sensing recovery principles
I Kernel embeddings and random features

I Theoretical recovery guarantees and bounds on the sketch
dimension needed

I Applications:
I sketched PCA
I sketched clustering
I skteched mixture of Gaussians estimation
I . . . more to come?
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SketchML matlab toolbox available:
(large-scale mixture learning using sketches)

http://sketchml.gforge.inria.fr/

ArXiv Preprint:

Compressive Statistical Learning with Random Feature Moments
R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin

https://arxiv.org/abs/1706.07180
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