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@ The sketched learning approach
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CLASSICAL MODEL FOR LEARNING

» Each training data point stored as a d-vector
» Training collection X = (x4, ..., x,) seen as a (d, n) matrix
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CLASSICAL MODEL FOR LEARNING

» Each training data point stored as a d-vector
» Training collection X = (x4, ..., x,) seen as a (d, n) matrix
» Usual abstract approach (decision theory):

» Want to find a predictor (“hypothesis”) h € H suited to data
» Performance on data point x measured by loss function ¢(x, h)
» Goal is to minimize averaged loss and approximate the minimizer

h* = ArgMin R(h) = Arg Min E[¢(X, h)]
heH heH
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CLASSICAL MODEL FOR LEARNING

» Each training data point stored as a d-vector
» Training collection X = (x4, ..., x,) seen as a (d, n) matrix
» Usual abstract approach (decision theory):

» Want to find a predictor (“hypothesis”) h € H suited to data
» Performance on data point x measured by loss function ¢(x, h)
» Goal is to minimize averaged loss and approximate the minimizer

h* = ArgMin R(h) = Arg Min E[¢(X, h)]

heH heH
» Assuming (xi, ..., Xn) are drawn i.i.d., natural proxy is empirical risk
minimizer
herv = min ’R m|n — (X
erm = MiN Z (xi, h

(can possibly be combined with regularlzatlon)
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CLASSICAL FRAMEWORK

heH

—

‘ R(R) = 130 0 ) ’
CRE

Data Learning

» Storage cost: O(nd)
» Computation cost: O((nd)*)

» Stochastic gradient can improve computation bottlenecks but usually
requires several data passes
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SKETCHED LEARNING APPROACH

Py, Dy, ... Py

X - R hew
X4 \
X B[01(X)]| = 550 @)
X3 E[®5(X)]

— - Learn?
° .
° L]
° ~
L] ~
. E[®n(X)] Arg Min B(h)
heH

Xn

Sketch

Data

(Empirical moments)

» Storage cost after sketching: O(m)
» Computation cost: hopefully polynomial in m
» Sketch can be updated very easily
» Which moments ¢;? How large should m be?
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FIRST CONSIDERATIONS

» In the classical approach, learning theory guarantees are of the form

sup
heH

R(h) — ﬁ(h)‘ < e(n),

with high probability, e.g. £(n) = O(\f%) for a hypothesis space of
metric dimension ~.
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FIRST CONSIDERATIONS

» In the classical approach, learning theory guarantees are of the form

sup|R(h) - ﬁ(h)‘ < e(n),

heH

with high probability, e.g. ¢(n) = O(\f%) for a hypothesis space of
metric dimension ~.
» This implies that the ERM estimator satisfies the risk bound

R(heam) < R(h*) + £(n).
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FIRST CONSIDERATIONS

» In the classical approach, learning theory guarantees are of the form

~

sup|R(h) — R(h)| < <(n),
heH

with high probability, e.g. ¢(n) = O(\f%) for a hypothesis space of
metric dimension ~.
» This implies that the ERM estimator satisfies the risk bound

R(FIEF;M) < R(h*) + E(n).

» To preserve this property up to constant factor for an estimator

hsketched it is sufficient to ensure that

R(herw) ~ R(Psircned)| < Sup|R(R) ~ R(h)
S
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A NAIVE APPROACH

» A first thought is to discretize the hypothesis space into hy, ..., hy
and take ®;(x) = 4(x, hy),i=1,...,m

» Then we simply have

E[d;(X Zﬁx, (hy). i=1,...,m.

» With the moment information, we can replace ERM by “discretized
ERM” over hy, ..., hpy.
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A NAIVE APPROACH

G. Blanchard

A first thought is to discretize the hypothesis space into hy, ..., hy
and take ®;(x) = ¢(x, h;),i=1,...,m

Then we simply have

E[®;(X Zﬁx,, (hy), i=1,...,m.

With the moment information, we can replace ERM by “discretized
ERM” over hy, ..., hpy.

To ensure ‘R(EEHM) — R(Fld,-sc,EHM)‘ < g(n), require (hy,..., hy) to
be an ¢(n)-covering of the space H (say for supremum norm).

If H is of metric dimension ~ a covering typically requires
m= O(¢77) = O(n"/?), seems hopeless!
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SOME HOPE (1)

» Consider “trivial” example ¢(x, h) = || x — hHQ, goal is to learn mean
h* = E[X]; obviously only need to store only the empirical mean
Elh(X)] =130, xi.e. m=1!
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SOME HOPE (1)

» Consider “trivial” example ¢(x, h) = || x — hHZ, goal is to learn mean
h* = E[X]; obviously only need to store only the empirical mean
Elh(X)] =130, xi.e. m=1!

» Can this phenomenon be generalized?
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SOME HOPE (2)

» Example 2: PCA. Since we only need the estimated (covariance)
matrix to find PCA directions, we only need to keep moments of
order 2 (m = O(d?)).

» We can even hope do to better by using low-rank approximations of
the covariance. Using random projections on Gaussian vectors is a
well-known mean to this goal.
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TOWARDS SKETCHED CLUSTERING

» Example 3: We will be interested in learning goals where the target
cannot be easily represented in terms of moments, i.e.
k-means/k-medians.

G. Blanchard RegML 2017, 6/5/2017 Oslo 10/31



OUTLINE

@ A framework for sketched learning
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AN ABSTRACT FRAMEWORK
» Let 90t denote the set of probability measures on X = RY.
» Define the Risk Operator
R(w, h) = Ex.[¢(X, h)].

Note that the empirical risk is

n

~ . N 1 o
R(h) =R(7n, h), with 7ty = > " 65, (empirical measure).

i=1

» Observe that R(m, h) is linear in .
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AN ABSTRACT FRAMEWORK
» Let 90t denote the set of probability measures on X = RY.
» Define the Risk Operator
R(w, h) = Ex.[¢(X, h)].

Note that the empirical risk is

n

~ . N 1 o
R(h) =R(7n, h), with 7ty = > " 65, (empirical measure).

i=1

» Observe that R(m, h) is linear in .

» Given ®(x) = (P1(x),. .., Pm(x)) define the sketching operator
Ao (1) = Ex[P(X)].

The data sketch is s = E[®(X)] = Ao (7).
» Note that A is a linear operator on probability measures.
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APPROACH (FORMAL VERSION)

» Sketch step:
s = Ay(7p) € R™.
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APPROACH (FORMAL VERSION)

» Sketch step:
s = Ay(7n) € R™.

» Reconstruction (“decoding”) from sketch step:
S Als]=:7 € M.

This formally reconstructs a probability distribution 7 by applying the
“decoder” A to the sketch.
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APPROACH (FORMAL VERSION)

» Sketch step:
s = Ay(7n) € R™.

» Reconstruction (“decoding”) from sketch step:
S Als] =7 e M.

This formally reconstructs a probability distribution 7 by applying the
“decoder” A to the sketch.

» Approximate learning step:

h = ArgMin R(w, h).
heH
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GOAL FOR THEORY

» Remember from initial considerations we aim (ideally) at

‘R(BEHMJT) — R(Psketchea> T)| S fuglR(h, m) — R(h, 7).
S
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GOAL FOR THEORY

» Remember from initial considerations we aim (ideally) at

‘R(BEHMJT) — R{sketcheds T)| S gule(h, m) — R(h,7n)|.
eH

» Since EERM and FSke,Ched are two ERMs based on the true empirical
7n and its reconstruction 7, a sufficient condition for the above is

sup|R(h, ) — R(h,7)| < sup|R(h, ) — R(h, 7).
heH heH
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GOAL FOR THEORY

» Remember from initial considerations we aim (ideally) at

‘R(BEHMJT) — R{sketcheds T)| S gule(h, m) — R(h,7n)|.
eH

» Since EERM and FSke,Ched are two ERMs based on the true empirical
7n and its reconstruction 7, a sufficient condition for the above is

sup|R(h,m) — R(h,7)| < sup|R(h, ) — R(h,7n)l.
heH heH
Using notation [|p|| ;) := SUppey [R(h, p)|, rewrite as

I = A(Ae (7Dl 2izy S 17 = 7'Ml 23y -

» Since the reconstruction is obtained from the sketch information only,
it is reasonable to aim at

I = A(A ()l 234y S Ao (T = 7).
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ABSTRACT COMPRESSION/DECODING RESULTS

» Assume we have a “model” G C 9 so that the sketching operator
satisfies the following lower restricted isometry property:

vr, ' €& H7rf7r’||£(H) < CallA(r — '), - (LRIP)
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ABSTRACT COMPRESSION/DECODING RESULTS

» Assume we have a “model” G C 9 so that the sketching operator
satisfies the following lower restricted isometry property:

vr, ' €& H7rf7r’||£(H) < CallA(r — '), - (LRIP)

» Then the “ideal decoder”

A(s) = Arg Min||s — A(r)],
TeS

satisfies the following instance optimality property for any =, n’:
I = ALA(T)) | 30 S A, &) + [|A(T = )5,
with
d(r,8) = int (I = ol iz + 2ClAlT = )l ) -

ceS

» (Conversely, the above property implies a LRIP inequality).
(Bourrier et al, 2014)

G. Blanchard RegML 2017, 6/5/2017 Oslo 15,31



BLUEPRINT FOR SKETCHED LEARNING METHOD

» Define suitable restricted model for distributions &. Generally it
should include distributions whose risk vanishes.
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BLUEPRINT FOR SKETCHED LEARNING METHOD

» Define suitable restricted model for distributions &. Generally it
should include distributions whose risk vanishes.

» Find suitable sketching dimension m and features ¢ so that the
corresponding sketching operator A¢ satisfies a LRIP inequality,
restricted to model &.
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BLUEPRINT FOR SKETCHED LEARNING METHOD

G. Blanchard

Define suitable restricted model for distributions &. Generally it
should include distributions whose risk vanishes.

Find suitable sketching dimension m and features ¢ so that the
corresponding sketching operator A¢ satisfies a LRIP inequality,
restricted to model &.

Define the ideal decoder from sketch s

A(s) = ArgMin||s — Ao ()|, -

TeS

For theory: interpret the resulting instance optimality bound in terms
of the learning risk.

For practice: find suitable approximation of the ideal decoder if it is
computationally too demanding.

RegML 2017, 6/5/2017 Oslo

16/31



OUTLINE

® Two examples
Sketched PCA
Sketched clustering
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WARM UP: SKETCHED PCA

» The risk is the PCA reconstruction error
Reca(r, h) = Bxr [ X ~ PXIZ]

where hypothesis space H = linear subspaces of dimension k and
P;, = orthogonal projector onto h.
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WARM UP: SKETCHED PCA

» The risk is the PCA reconstruction error
Reca(r, h) = Bxr [ X ~ PXIZ]

where hypothesis space H = linear subspaces of dimension k and
P;, = orthogonal projector onto h.
» To construct Ag, use a linear operator M to R satisfying the RIP

2

2
HMHFrob

for all matrices M of rank less than k.
(m = O(kd) using random linear operator, Candés and Plan 2011)
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WARM UP: SKETCHED PCA

» The risk is the PCA reconstruction error
Reca(r, h) = Bxr [ X ~ PXIZ]

where hypothesis space H = linear subspaces of dimension k and
P;, = orthogonal projector onto h.
» To construct A4, use a linear operator M to R™ satisfying the RIP

HMHFrob

for all matrices M of rank less than k.

(m = O(kd) using random linear operator, Candés and Plan 2011)
» Sketch: A (7,) = M(Z,) (apply M to empirical covar. matrix .)
» Reconstruct from a sketch s: find

Y = ArgMin||s — M(M)]|,.
rank(M)<k

» Output: h= space spanned by k first eigenvectors of ¥.
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THEORETICAL GUARANTEE

For any distribution = on B(0, R), we have the bound (w.h.p. over data
sampling)

Rpca(, h) — Rpca(m, ) < C<\/RRPCA(7T7 h*) + RZ\/§> .

» independent of total data dimension

» the first factor v’k may be spared using more precise results from
low rank matrix sensing (also convex relaxation of reconstruction
program for better computational efficiency)
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SKETCHED CLUSTERING: SETTING

» Consider k-means or k-medians. Assume data is bounded by R.

» Hypothesis space: H = H ». g, set of cluster centroids
h=(c1,...,ck) that are R-bounded and pairwise 2z-separated.

» Loss function
,h) = min |[x —¢]®,
é(X, ) 1§i<k|| l||2,

with p = 1 for k-medians, p = 2 for k-means.
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SKETCHED CLUSTERING: SETTING

G. Blanchard

Consider k-means or k-medians. Assume data is bounded by R.

Hypothesis space: H = H ». g, set of cluster centroids
h=(c1,...,ck) that are R-bounded and pairwise 2z-separated.

Loss function
,h) = min |[x —¢]®,
(x, h) 1§i|<k||x cill3 ,

with p = 1 for k-medians, p = 2 for k-means.

Restricted model: & = & 5. g set of k-point distributions whose
support is in H 2. .
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SKETCHED CLUSTERING: SKETCHING

» Fourier features: consider scaled Fourier features
(Dw(x) =

where C,, ~ d/((1 + &||wl|) log k).
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SKETCHED CLUSTERING: SKETCHING

» Fourier features: consider scaled Fourier features

Py, (x) = ﬁeh”?

where C,, ~ d/((1 + &||wl|) log k).

» Random frequency vectors: draw wy, ..., wn i.i.d. in RY from the
distribution with density

Nw) o (1 + £2||w]?) exp(—2||w|? /(2 10g k).

» The sketching operator .44 corresponds to the random Fourier
features (¢,), i=1,...,m.
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SKETCHED CLUSTERING: RECONSTRUCTION
» Reconstruct from a sketch s: find
T = Arg Min||s — Ao (7)|l, -

TESk 2¢ R

» Output: centroids given by support of 7.
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SKETCHED CLUSTERING: RECONSTRUCTION

» Reconstruct from a sketch s: find

T = Arg Min||s — Ao (7)|l, -

TESk 2c,R
» Output: centroids given by support of 7.

» Theoretical guarantee on reconstruction: if
2 43 R
m > k“d°polylog(k, d)log (5) )
then for any distribution = on B(0, R), with high probability on the
draw of frequencies and of the data, it holds
N RPdV/klog k
—

1
P

_ RP./KTog k
R(m, h) — R(x, h*) < %R(w, )
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SKETCHED CLUSTERING: EXPERIMENTS

Simplifications (or cut corners...) for experiments:

» Use regular Gaussian density for frequency drawing (no weighting)
» Use heuristic greedy search for the reconstruction operator
» Ignore the 2¢-separation constraint for reconstruction

G. Blanchard RegML 2017, 6/5/2017 Oslo
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SKETCHED CLUSTERING: EXPERIMENTS

Data: mixture of 10 Gaussians with uniform weights and centers drawn
from a Gaussian
0.02 0.04 0.06 0.08

l:_ [ T
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©
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m/(kd) m/(kd)
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x

15
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5

Normalized k-means risk, on n = 10*k points uniformly drawn in [0, 1]°,

d = 10 (left), k = 10 (right).
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SKETCHED CLUSTERING: EXPERIMENTS

o 2
S 10 o
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Relative time, memory and k-means risk of CKM with respect to k-means
(10° represents the k-means result). (d = 10)
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OUTLINE

@ How to construct a sketching operator
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator A4 satisfying LRIP.
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator A4 satisfying LRIP.

» Use as intermediary a kernel Hilbert norm ||.||,. satisfying LRIP:

\V/7T,7T/ 66 Hﬂ'iﬂ'/”[,(H) S, Hﬂ'*ﬂ'l”m

where « is a reproducing kernel and ||7r||i = Ex x/re2[k(X, X')].
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator A4 satisfying LRIP.

» Use as intermediary a kernel Hilbert norm ||.||,. satisfying LRIP:

Vi €& I =7l gy S llm =7l
where r is a reproducing kernel and ||[|> = Ex x..re2[k(X, X')].
» Assume on the other hand the following representation holds:
KX X) = B [0 (0)2. ()]

where (¢.,) is a family of complex-valued feature functions.
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator A4 satisfying LRIP.
» Use as intermediary a kernel Hilbert norm ||.||,. satisfying LRIP:
Vo €6 lm =7l gy S llm =7l
where r is a reproducing kernel and ||[|> = Ex x..re2[k(X, X')].
» Assume on the other hand the following representation holds:
KX X) = B [0 (0)2. ()]
where (¢.,) is a family of complex-valued feature functions.

» Strategy: sample random features w; ~ A, ensuring (w.h.p.) the
corresponding sketching operator delivers good enough
approximation to .||, i.e.

Vo, €& |m— '], < JAa(m — '), -
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DIMENSION OF SKETCH REQUIRED

» Uniform approximation of the kernel norm by the sketching norm
obtained via Bernstein’s inequality + covering argument on the
normalized secant set

o
S.|N(6)_{ T 7T,7T/€6}.

[l
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DIMENSION OF SKETCH REQUIRED

» Uniform approximation of the kernel norm by the sketching norm
obtained via Bernstein’s inequality + covering argument on the
normalized secant set

SH~HN(6) = {H 7T,7T/ S 6}

[l

» More precisely we find the sufficient condition

m 2 log N'(S). (6),dr,1/2),

where dr(m, ) = sup,||Exx[®w(X)]° — [Exr [®u(X)] |
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DIMENSION OF SKETCH REQUIRED

» Uniform approximation of the kernel norm by the sketching norm
obtained via Bernstein’s inequality + covering argument on the
normalized secant set

-7
S.|N(6)_{ ’W,W/EG}.

=7l

» More precisely we find the sufficient condition

m 2 log N'(S). (6),dr,1/2),
where dr (7, 7') = sup,, | [Exer [P (X)][Z = [Exom [P (X)][?] .

» Finally, the vectorial form of Bernstein’s inequality can be used again
(this time on the data) to control the estimation noise || Ao (7 — 7p)|/5-
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APPLICATION TO MIXTURES AND CLUSTERING

Overview of remaining steps to obtain bound on risk and sketch
dimension:

» Establish the LRIP between the risk norm ||. ;) and the kernel
norm ||.||. on the model &.

» Results obtained for general family of RBF-type kernels and models
given by k-mixtures of distributions
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Overview of remaining steps to obtain bound on risk and sketch
dimension:

» Establish the LRIP between the risk norm ||. ;) and the kernel
norm ||.||. on the model &.

» Results obtained for general family of RBF-type kernels and models
given by k-mixtures of distributions

» Bound the (log) covering numbers: requires some classical
inequalities between covering numbers
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APPLICATION TO MIXTURES AND CLUSTERING

Overview of remaining steps to obtain bound on risk and sketch
dimension:

» Establish the LRIP between the risk norm ||. ;) and the kernel
norm ||.||. on the model &.

» Results obtained for general family of RBF-type kernels and models
given by k-mixtures of distributions

» Bound the (log) covering numbers: requires some classical
inequalities between covering numbers

» Once the instance optimality inequality is obtained, relate back the
terms of the bound to the learning task (learning risk).
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CONCLUSION

v

The sketched learning framework holds promise to reduce
computation and memory burden

General theoretical framework based on:

» LRIP/compressed sensing recovery principles
» Kernel embeddings and random features

v

v

Theoretical recovery guarantees and bounds on the sketch
dimension needed

v

Applications:

sketched PCA

sketched clustering

skteched mixture of Gaussians estimation
... more to come?

vvyVvVvy
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SketchML matlab toolbox available:
(large-scale mixture learning using sketches)

http://sketchml.gforge.inria.fr/

ArXiv Preprint:
Compressive Statistical Learning with Random Feature Moments

R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin
https://arxiv.org/abs/1706.07180
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