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Reproducing Kernel Hilbert Spaces

RKHS: a Hilbert space of functions on X with continuous evaluation
f 7→ f(x), ∀x ∈ X (norm convergence implies pointwise convergence).
Each RKHS corresponds to a positive definite kernel k : X × X → R, s.t.

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

RKHS can be constructed as Hk = span {k(·, x) |x ∈ X} and includes
functions f(x) =

∑n
i=1 αik(x, xi) and their pointwise limits.
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk = k(x, y)
inner products readily available

• nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions
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P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]

D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings Oslo, 06/05/2017 3 / 18



Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:
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MMDk(P ,Q) = ‖µk(P )− µk(Q)‖Hk = sup
f∈Hk: ‖f‖Hk≤1

|Ef(X)− Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 iff P = Q.
• Gaussian RBF exp(− 1

2σ2 ‖x− x′‖
2
2), Matérn family, inverse multiquadrics.

For characteristic kernels on LCH X , MMD metrizes weak* topology on
probability measures [Sriperumbudur,2010],

MMDk (Pn, P )→ 0⇔ Pn  P.
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Some uses of MMD

within-sample average similarity
–

between-sample average similarity

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

MMD has been applied to:

two-sample tests and independence tests
[Gretton et al, 2009, Gretton et al, 2012]

model criticism and interpretability [Lloyd &

Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

analysis of Bayesian quadrature [Briol et al,

2015+]

ABC summary statistics [Park, Jitkrittum &

DS, 2015]

summarising streaming data [Paige, DS &

Wood, 2016]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

training deep generative models [Dziugaite,

Roy & Ghahramani, 2015; Sutherland et al, 2017]

MMD2
k (P ,Q) = E

X,X′i.i.d.∼ P
k(X,X ′) + E

Y ,Y ′i.i.d.∼ Q
k(Y , Y ′)− 2EX∼P,Y∼Qk(X,Y ).
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Kernel dependence measures
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Figure by Arthur Gretton

HSIC2(X,Y ;κ) = ‖µκ(PXY )− µκ(PXPY )‖2Hκ

Hilbert-Schmidt norm of the feature-space
cross-covariance [Gretton et al, 2009]

dependence witness is a smooth function in
the RKHS Hκ of functions on X × Y

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"

Independence testing framework that
generalises Distance Correlation (dcor) of
[Szekely et al, 2007]: HSIC with Brownian
motion covariance kernels [DS et al, 2013]
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Distribution Regression
supervised learning where labels are available at the group, rather than at the
individual level.

If we wish to make a prediction at a new location s∗, the
standard predictive equations for GP regression [26], derived
by conditioning a multivariate Gaussian distribution, tell us:

y∗ | s∗, X,y ∼ N (k∗(K+σ2I)−1y, k∗∗−k∗(K+σ2I)−1k∗>)
(11)

where Kij = k(si, sj) and k∗ = [k(s1, s
∗) . . . k(sn, s

∗)] and
k∗∗ = k(s∗, s∗). Thus we have a way of combining a prior
over f , parametrized by k(s, s′), with observed data to ob-
tain a posterior distribution over a new prediction y∗ at a
new location s∗. This is a very powerful method, as it en-
ables a fully Bayesian treatment of regression, a coherent
approach to kernel learning through the marginal likelihood
(for details see [26]), and posterior uncertainty intervals.

We can immediately see the connection between the ker-
nel ridge regression estimator in Eq. (7) and the posterior
mean of the GP in Eq. (11). (A superficial difference is that
in Eq. (7) our predictors are µ̂i while in Eq. (11) they are
generic locations si, but this difference will go away in Sec-
tion 5 when we propose using GP regression for distribution
regression.) The predictive mean of GP regression is ex-
actly equal to the kernel ridge regression estimator, with σ2

corresponding to λ. In ridge regression, a larger penalty λ
leads to a smoother fit (equivalently, less overfitting), while
in GP regression a larger σ2 favors a smoother GP poste-
rior because it implies more measurement error. For a full
discussion of the connections see [2, Sections 6.2.2-6.2.3].

4. ECOLOGICAL INFERENCE
In this section we state the ecological inference problem

that we intend to solve. We use the motivating example of
inferring Barack Obama’s vote share by demographic sub-
group (e.g. men versus women) in the 2012 US presidential
election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these
provide the labels in our problem. Predictors are in the
form of demographic covariates about individuals (e.g. from
a survey with individual level data like the census). The
challenge is that the labels are aggregate, so it is impossi-
ble to know which candidate was selected by any particular
individual. This explains the terminology: “ecological cor-
relations” are correlations between variables which are only
available as aggregates at the group level [28]

We use the same notation as in Section 3.2. Let xji ∈ Rd
be a vector of covariates for individual i in region j. Let
wji be survey weights2. Let yi be labels in the form of two-
dimensional vectors (ki, ni) where ki is the number of votes
received by Obama out of ni total votes in region i. Then
our dataset is:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . . ,

(
{xjn}Nn

j=1, yn
)

(12)

We will typically have a rich set of covariates available, in
addition to the demographic variables we are interested in
stratifying on, so the xji will be high-dimensional vectors
denoting gender, age, income, education, etc.

Our task is to learn a function f from a demographic sub-
group (which could be everyone) within region i to the prob-
ability that this demographic subgroup supported Obama,

2Covariates usually come from a survey based on a random
sample of individuals. Typically, surveys are reported with
survey weights wji for each individual to correct for oversam-
pling and non-response, which must be taken into account
for any valid inference (e.g. summary statistics, regression
coefficients, standard errors, etc.).

i.e. the number of votes this group gave Obama divided by
the total number of votes in this group.

5. OUR METHOD
In this section we propose our new ecological inference

method. Our approach is illustrated in a schematic in Figure
1 and formally stated in Algorithm 1.
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Figure 1: Illustration of our approach. Labels
y1, y2 and y3 are available at the group level giving
Obama’s vote share in regions 1, 2, and 3. Co-
variates are available at the individual level giv-
ing the demographic characteristics of a sample of
individuals in regions 1, 2, and 3. We project
the individuals from each group into feature space
using a feature map φ(x) and take the mean by
group to find high-dimensional vectors µ1, µ2 and µ3,
e.g. µ1 = 1

3
(φ(x11) + φ(x21) + φ(x31)). Now our prob-

lem is reduced to supervised learning, where we
want to learn a function f : µ → y. Once we have
learned f we make subgroup predictions for men
and women in region 3 by calculating mean embed-
dings for the men µm3 = 1

2
(φ(x33) + φ(x43)) and women

µw3 = 1
3
(φ(x13) + φ(x23) + φ(x53)) and then calculating

f(µm3 ) and f(µw3 ). For a more rigorous description
of our algorithm see Algorithm 1.

Recall the two-stage distribution regression approach in-
troduced in Section 3.2. Our method has a similar approach.
To begin, we use FastFood as introduced in Section 3.3 with
an RBF kernel to produce an explicit feature map φ and
calculate the mean embeddings3, one for each region i, of
Eq. (4) with survey weights:

µ̂1 =

∑
j w

j
1φ(xj1)∑
j w

j
1

, . . . , µ̂n =

∑
j w

j
nφ(xjn)∑
j w

j
n

(13)

3 Distribution regression with explicit random features was
previously considered in Oliva et al. [19] using Rahimi and
Recht [25] to speed up an earlier distribution regression
method based on kernel density estimation [22]. This ap-
proach has comparable statistical guarantees to distribution
regression using RKHS-mean embeddings but inferior em-
pirical performance [33]. As far as we are aware, using Fast-
Food kernel mean embeddings for distribution regression is
a novel approach.

Mooij, Peters, Janzing, Zscheischler and Schölkopf

Figure 6: Scatter plots of the cause-effect pairs in the CauseEffectPairs benchmark data.
We only show the pairs for which both variables are one-dimensional.

the performance of methods on simulated data where we can control the data-generating
process, and therefore can be certain about the ground truth.

Simulating data can be done in many ways. It is not straightforward to simulate data
in a “realistic” way, e.g., in such a way that scatter plots of simulated data look similar to
those of the real-world data (see Figure 6). For reproducibility, we describe in Appendix C
in detail how the simulations were done. Here, we will just sketch the main ideas.

We sample data from the following structural equation models. If we do not want to
model a confounder, we use:

EX ∼ pEX , EY ∼ pEY
X = fX(EX)

Y = fY (X,EY ),

and if we do want to include a confounder Z, we use:

EX ∼ pEX , EY ∼ pEY , EZ ∼ pEZ
Z = fZ(EZ)

X = fX(EX , EZ)

Y = fY (X,EY , EZ).

Here, the noise distributions pEX , pEY , pEZ are randomly generated distributions, and the
causal mechanisms fZ , fX , fY are randomly generated functions. Sampling the random

28

Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

• classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
• aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
• image labels based on a distribution of small patches [Szabo et al, 2016]
• “traditional” parametric statistical inference by learning a function from sets of

samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]
• identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]

Possible (distributional) covariate shift?
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All possible differences between generating processes?

differences discovered by an MMD two-sample test can be due to different
types of measurement noise or data collection artefacts

• With a large sample-size, uncovers potentially irrelevant sources of variability:
slightly different calibration of the data collecting equipment, different
numerical precision, different conventions of dealing with edge-cases

Learning on distributions: each label yi in supervised learning is associated to
a whole bag of observations Bi = {Xij}Nij=1 – assumed to come from a
probability distribution Pi

• Each bag of observations could be impaired by a different measurement noise
process. Distributional covariate shift: different measurement noise on test
bags?

Both problems require encoding the distribution with a representation
invariant to symmetric noise.

Testing and Learning on Distributions with Symmetric Noise Invariance.
Ho Chung Leon Law, Christopher Yau, DS.
http://arxiv.org/abs/1703.07596
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Random Fourier features: Inverse Kernel Trick
Bochner’s representation: Assume that k is a positive definite
translation-invariant kernel on Rp. Then k can be written as

k(x, y) =

ˆ
Rp

exp
(
iω>(x− y)

)
dΛ(ω)

= 2

ˆ
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.

Sample m frequencies Ω = {ωj}mj=1 ∼ Λ and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
2

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈ξΩ(x), ξΩ(y)〉R2m ,

with an explicit set of features ξΩ : x 7→
√

2
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]>
.

How fast does m need to grow with n? Can be sublinear for regression [Bach,

2015].
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Approximate Mean Embeddings and Characteristic Functions

If k is translation-invariant, MMD becomes the weighted L2-distance between the
characteristic functions of P and Q [Sriperumbudur, 2010].

‖µP − µQ‖2Hk =

ˆ
Rd
|ϕP (ω)− ϕQ (ω)|2 dΛ (ω) ,

Approximate mean embedding using random Fourier features is simply the
evaluation (real and complex part stacked together) of the characteristic function
at the frequencies {ωj}mj=1 ∼ Λ:

Φ(P ) = EX∼P ξΩ(X)

=

√
2

m
EX∼P

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . . , cos

(
ω>mx

)
, sin

(
ω>mx

)]>
Used for distribution regression [Sutherland et al, 2015] and for sketching / compressive
learning [Keriven et al, 2016].
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The Noise and the Signal

Adopting similar ides from nonparametric deconvolution of [Delaigle and Hall, 2016].

define a symmetric positive definite (SPD) noise component to be any
random vector E on Rd with a positive characteristic function,
ϕE(ω) = EX∼E

[
exp(iω>E)

]
> 0, ∀ω ∈ Rd (but E is not a.s. 0)

• symmetric about zero, i.e. E and −E have the same distribution
• if E has a density, it must be a positive definite function
• spherical zero-mean Gaussian distribution, as well as multivariate Laplace,

Cauchy or Student’s t (but not uniform).

define an (SPD-)decomposable random vector X if its characteristic function
can be written as ϕX = ϕX0

ϕE , with E SPD noise component.
Assume that only the indecomposable components of distributions are of
interest.
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Phase Discrepancy and Phase Features
[Delaigle and Hall, 2016] construct density estimators for nonparametric deconvolution,
i.e. estimate density f0 of X0 with observations Xi ∼ X0 + E. E has unknown
SPD distribution. Matching phase functions:

ρX (ω) =
ϕX (ω)

|ϕX (ω)|
= exp (iτX (ω))

Phase function is invariant to SPD noise as it only changes the amplitude of the
characteristic function.
We are not interested in density estimation but in measuring differences up to
SPD noise. In analogy to MMD, define phase discrepancy:

PhD(X,Y ) =

ˆ
Rd
|ρX (ω)− ρY (ω)|2 dΛ (ω)

for some spectral measure Λ.
Construct distribution features by simply normalising approximate mean
embeddings:

Ψ(PX) =

√
1

m

[
Eξω1

(X)

‖Eξω1
(X)‖

, . . . ,
Eξωm(X)

‖Eξωm(X)‖

]>
where ξωj (x) =

[
cos
(
ω>j x

)
, sin

(
ω>j x

)]
.
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Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables?

No

Figure: Example of two indecomposable distributions which have the same phase
function. Left: densities. Right: characteristic functions.

fX(x) =
1√
2π
x2 exp(−x2/2), fY (x) =

1

2
|x| exp(−|x|).
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Learning Phase Features

Random Phase features have a large
variance, due to empirical normalisation.
Given a supervised signal, we can optimise a
set of frequencies {wi}mi=1 that will give us a
useful discriminative representation. In other
words, we are no longer focusing on a
specific translation-invariant kernel k
(specific Λ), but are learning Fourier/phase
features.
A neural network with coupled cos/sin
activation functions, mean pooling and
normalisation.
Straightforward implementation in
Tensorflow
(code: https://github.com/hcllaw/
Fourier-Phase-Neural-Network)

D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings Oslo, 06/05/2017 14 / 18

https://github.com/hcllaw/Fourier-Phase-Neural-Network
https://github.com/hcllaw/Fourier-Phase-Neural-Network


Synthetic Example

θ ∼ Γ(α, β),

Z ∼ U [0, σ],

ε|Z ∼ N (0, Z),

{Xi}|θ, ε
i.i.d.∼ Γ (θ/2, 1/2)√

2θ
+ ε,

Goal: Learn a mapping {Xi} 7→ θ

Can be used for semi-automatic
ABC [Fearnhead & Prangle, 2012] with
kernel distribution regression for
summary statistics [Mitrovic, DS & Teh,

2016].

Figure: MSE of θ, using the Fourier and
phase neural network averaged over 100
runs. Here noise σ is varied between 0 and
3.5, and the 5th and the 95th percentile is
shown.
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Aerosol MISR1 Dataset [Wang et al, 2012] with Covariate Shift

figure from Wang et al, 2012

Aerosol Optical Depth (AOD)
multiple-instance learning problem with 800
bags, each containing 100 randomly
selected 16-dim multispectral pixels
(satellite imaging) within 20km radius of
AOD sensor.

Image variability due to surface properties –
small spatial variability of AOD.

The label yi provided by the ground AOD
sensors.

The test data is impaired by additive
SPD noise components.

Figure: RMSE on the test set, corrupted by
various levels of noise, using the Fourier and
phase neural network and GKKR averaged over
100 runs. Here noise-to-signal ratio σ is varied
between 0 and 3.0, and the 5th and the 95th

percentile is shown.
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Can Fourier features learn invariance?

Discriminative frequencies learned
on the “noiseless” training data
correspond to Fourier features that
are nearly normalised (i.e. they are
close to unit norm).
This means that the Fourier NN has
learned to be approximately
invariant based on training data,
indicating that Aerosol data
potentially has irrelevant SPD noise
components (“cloudy pixels”)

Figure: Histograms for the distribution of
the modulus of Fourier features over each
frequency w for the Aerosol data (test set);
Green: Random Fourier Features (with the
kernel bandwidth optimised on training
data)
Bottom Blue: Learned Fourier features;
Left: Original test set; Right: Test set with
(additional) noise.
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Summary

When measuring nonparametric distances between distributions, can we
disentangle the differences in noise from the differences in the signal?
We considered two different ways to encode invariances to symmetric noise:

• MMD for asymmetry (not discussed in the talk) in paired sample differences,
MMD(X − Y, Y −X), which can be used to construct a two-sample test up
to symmetric noise.

• weighted distance between the empirical phase functions for learning
algorithms on distribution inputs which are robust to measurement noise and
covariate shift.
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