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Reproducing Kernel Hilbert Spaces

@ RKHS: a Hilbert space of functions on X with continuous evaluation
f = f(x), Yx € X (norm convergence implies pointwise convergence).
@ Each RKHS corresponds to a positive definite kernel k: X x X — R, s.t.
Q@ Vxe X, k(,z) € H, and
Q Ve e X, VfecH, (fik(,x))y = f(x).
@ RKHS can be constructed as Hy, = span {k(-,x) |z € X} and includes
functions f(z) = > | a;k(z, ;) and their pointwise limits.
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Kernel Trick and Kernel Mean Trick

o implicit feature map x — k(-,z) € Hy, .« e
replaces = — [¢1(x), ..., ¢ps(x)] € R® * ' e
° <k('7x)’k("y)>’;{k = k(m,y) e °

inner products readily available
e nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured
Smola, 2001]

[Cortes & Vapnik, 1995; Schdlkopf &

data
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Kernel Trick and Kernel Mean Trick

o implicit feature map x — k(-,z) € Hy, .« e
replaces = — [¢1(x), ..., ¢ps(x)] € R® * -
° <k('7x)’k("y)>’;{k = k($7y) e °

inner products readily available

e nonlinear decision boundaries, nonlinear regression . .
. ) n g [Cortes & Vapnik, 1995; Schdlkopf &
functions, learning on non-Euclidean/structured

data Smola, 2001]
o RKHS embedding: implicit feature mean 5(P) = Ex(. X)
X ~ Py
[Smola et al, 2007; Sriperumbudur et al, 2010] ‘/_\
P px(P) = Expk(-, X) € Hy, Ve }M,’\é
replaces P — [E¢q(X),...,Eps(X)] € R® Ana l(P) ~ (@l
° <'uk(P)7 Mk(Q»'Hk = EXNRY"‘Qk(X7 Y) [Gretton et al, 2005; Gretton et al,

inner products easy to estimate )
2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;
Szabo et al, 2015]

® nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions
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Maximum Mean Discrepancy

e Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

i(P) = Ex[k(-, X)]

X~Pl

m(Q) = Evlk(-, V)]
Y~Q o ——m

h‘ (114 (P) = 1k Q)11

MMDy (P, Q) = [l (P) = 1k (Q)lly,, = o S _, [BF(X) —EF(Y))
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Maximum Mean Discrepancy

e Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

i(P) = Ex[k(-, X)]

XwPl

mk(Q) = Ev[k(-, V)]
Y~Q o——0Vnm

h‘ (114 (P) = 1 (Q) e

MMDx(P, Q) = [lur(P) — (@)l = . T IEf(X)—Ef(Y)]

o Characteristic kernels: MMDy (P, Q) =0 iff P = Q.
e Gaussian RBF exp(—51; ||z — m/H;) Matérn family, inverse multiquadrics.

@ For characteristic kernels on LCH X', MMD metrizes weak* topology on
probability measures [Sriperumbudur,2010],

MMDy, (P,, P) — 0 < P, ~ P.
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Some uses of MMD

MMD has been applied to:

within-sample average similarity e

between-sample average similarity °

Figure by Arthur Gretton

MMDj (P,Q) =E SR X)+E

7)(,z.'z\.ld.

vy i

two-sample tests and independence tests
[Gretton et al, 2009, Gretton et al, 2012]

model criticism and interpretability [Lioyd &
Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

analysis of Bayesian quadrature [Briol et al,
2015+]

ABC summary statistics [Park, Jitkrittum &
DS, 2015]

summarising streaming data [Paige, DS &
Wood, 2016]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

training deep generative models [Dziugaite,
Roy & Ghahramani, 2015; Sutherland et al, 2017]

Qk(Y, Y') = 2Ex~py~ok(X,Y).
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Kernel dependence measures

o1 03 08

S F O RN

AN 2
o YN HSIC*(X,Y;k) = |uk(Pxy) — e (Px Py)ll5,.
S = — o~ N\
\9“1' -
; (8 g @ Hilbert-Schmidt norm of the feature-space
N e e X O Ll cross-covariance [Gretton et al, 2009]

cor vs. deor @ dependence witness is a smooth function in
the RKHS #H,. of functions on X’ x Y

K@ e) ud,@)
Pellefe]
k(D o) x l J

-0.02

Dependence witness and sample

0.03

0.02

@ Independence testing framework that
generalises Distance Correlation (dcor) of

T — [Szekely et al, 2007]: HSIC with Brownian

motion covariance kernels [DS et al, 2013]

-0.03

xo

Figure by Arthur Gretton
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Distribution Regression

@ supervised learning where labels are available at the group, rather than at the
individual level.
w2 . ~ ¥ e # ¥V _F b o
ﬁ ‘%.mitki-.,_'\_“‘é»,;&*
-~ W [ N
W e e e e e W ¥ f\/ /

FE

o W iy feature space S 3 Lo* s #
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aitl ol 3 a} '..'ré j’ / INHIIU\'I F i G & et o 4
o R 73 o
* - I‘H” .
Tegion T rogion 2 rogion 3 — . s
Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

e classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]

e aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]

e image labels based on a distribution of small patches [Szabo et al, 2016]

e “traditional” parametric statistical inference by learning a function from sets of
samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]

o identify the cause-effect direction between a pair of variables from a joint
sample [Lopez-Paz et al,2015]

o Possible (distributional) covariate shift?
D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings
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All possible differences between generating processes?’

o differences discovered by an MMD two-sample test can be due to different
types of measurement noise or data collection artefacts

e With a large sample-size, uncovers potentially irrelevant sources of variability:
slightly different calibration of the data collecting equipment, different
numerical precision, different conventions of dealing with edge-cases

@ Learning on distributions: each label y; in supervised learning is associated to
a whole bag of observations B; = {Xij}j]-v;'l — assumed to come from a
probability distribution P;

e Each bag of observations could be impaired by a different measurement noise
process. Distributional covariate shift: different measurement noise on test
bags?

@ Both problems require encoding the distribution with a representation
invariant to symmetric noise.

Testing and Learning on Distributions with Symmetric Noise Invariance.
Ho Chung Leon Law, Christopher Yau, DS.
http://arxiv.org/abs/1703.07596
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Random Fourier features: Inverse Kernel Trick

Bochner’s representation: Assume that k is a positive definite
translation-invariant kernel on R?. Then k can be written as

k(z,y) = /Rp exp (in(x — y)) dA(w)

2 . {cos (wz) cos (w'y) +sin (w' z)sin (w'y)} dA(w)

for some positive measure (w.l.o.g. a probability distribution) A.

@ Sample m frequencies 2 = {wj};”:l ~ A and use a Monte Carlo estimator of

the kernel function instead [Rahimi & Recht, 2007]:
m
k(z,y) = i; {cos (w;] ) cos (w] y) + sin (w] 2) sin (w; y) }

= (la(z),$a(y))rem,

with an explicit set of features £q: z — \/% [cos (w{ @) ,sin (w] z),.. .]T.

@ How fast does m need to grow with n? Can be sublinear for regression [Bach,
2015].
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Approximate Mean Embeddings and Characteristic Functions

If k is translation-invariant, MMD becomes the weighted Lo-distance between the
characteristic functions of P and @ [Sriperumbudur, 2010].

lnr = el = [ | lor (@) — o0 @) dA @),

Approximate mean embedding using random Fourier features is simply the
evaluation (real and complex part stacked together) of the characteristic function
at the frequencies {w;}7", ~ A:

®(P) = Ex~péa(X)
1/ %EXNP [cos (wlTx) ,sin (wlT:z:) s .., COS (wlx) ,sin (w:n:r)] i

Used for distribution regression [Sutherland et al, 2015] and for sketching / compressive
learning [Keriven et al, 2016].
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The Noise and the Signal

Adopting similar ides from nonparametric deconvolution of [Delaigle and Hall, 2016].

o define a symmetric positive definite (SPD) noise component to be any
random vector E on R? with a positive characteristic function,
¢p(w) =Ex~p [exp(iw' E)] >0, Vw € R? (but E is not a.s. 0)
e symmetric about zero, i.e. E and —F have the same distribution
e if E has a density, it must be a positive definite function
e spherical zero-mean Gaussian distribution, as well as multivariate Laplace,
Cauchy or Student’s ¢ (but not uniform).

o define an (SPD-)decomposable random vector X if its characteristic function
can be written as px = ¢x,¢r, with £ SPD noise component.

@ Assume that only the indecomposable components of distributions are of
interest.
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Phase Discrepancy and Phase Features

[Delaigle and Hall, 2016] construct density estimators for nonparametric deconvolution,
i.e. estimate density fy of X with observations X; ~ Xq + E. E has unknown
SPD distribution. Matching phase functions:

px (w) = m = exp (itx (w))
Phase function is invariant to SPD noise as it only changes the amplitude of the
characteristic function.
We are not interested in density estimation but in measuring differences up to
SPD noise. In analogy to MMD, define phase discrepancy:

PhD(X,Y) = / ox (@) = py (@) dA (@)

for some spectral measure A.
Construct distribution features by simply normalising approximate mean

embeddings:
L[ E&, (X) B, (X) 1"
U(Px)=14/— e L
= [ B
where &, (z) = [cos (w;rx) ,sin (w;rx)}
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Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables?
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Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables? No
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Figure: Example of two indecomposable distributions which have the same phase
function. Left: densities. Right: characteristic functions.

(@) = Z=atesp(=a®/2). fy(z) = gl exp(a]).
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Learning Phase Features

Output Layer

Batch Normalisation Layer

Normalisation I I3 (X)
!

Mean Pooling

[ —
W 005(/10()()) ]
’

W eRmn LX) =X RV

Xe bepr

D.Sejdinovic (University of Oxford)

Learning with Kernel Embeddings

Random Phase features have a large
variance, due to empirical normalisation.

Given a supervised signal, we can optimise a
set of frequencies {w; }7", that will give us a
useful discriminative representation. In other
words, we are no longer focusing on a
specific translation-invariant kernel &
(specific A), but are learning Fourier/phase
features.

A neural network with coupled cos/sin
activation functions, mean pooling and
normalisation.

Straightforward implementation in
Tensorflow

(code: https://github.com/hcllaw/
Fourier-Phase-Neural-Network)
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Synthetic Example

0~ )
Z ~ U0l
ez~  N(0,2),

(Xalo,e at ROZR

@ Goal: Learn a mapping {X;} — 0

V20

=—= Fourier
«— Phase

1.0 15 2.0 25 3.0 35

@ Can be used for semi-automatic
ABC [Fearnhead & Prangle, 2012] with
kernel distribution regression for

Noise Level o

Figure: MSE of 6, using the Fourier and
phase neural network averaged over 100

summary statistics [Mitrovic, DS & Teh,

2016].

D.Sejdinovic (University of Oxford)

runs. Here noise o is varied between 0 and

3.5, and the 5 and the 95" percentile is

shown.
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Aerosol MISR1 Dataset (wane e 21, 2012 with Covariate Shift

20 The test data is impaired by additive
20 SPD noise components.

figure from Wang et al, 2012 20“

@ Aerosol Optical Depth (AOD) .
multiple-instance learning problem with 800  ox| -
bags, each containing 100 randomly o
selected 16-dim multispectral pixels

(satellite imaging) within 20km radius of

== Fourier NN
= Phase NN
~—— GKRR

25 30

15 2.
Noise Level o

Figure: RMSE on the test set, corrupted by
AQOD sensor. various levels of noise, using the Fourier and
phase neural network and GKKR averaged over

@ Image variability due to surface properties — {07 ne. Here noise-to-signal ratio o is varied

small spatial variability of AOD. between 0 and 3.0, and the 5t and the 95"
. percentile is shown.
@ The label y; provided by the ground AOD
SENSOrs.
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Can Fourier features learn invariance?

@ Discriminative frequencies learned B sy et o
on the “noiseless” training data o
correspond to Fourier features that . o
are nearly normalised (i.e. they are o
close to unit norm). s 51

. . .l |
@ This means that the Fourier NN has ™ i vomiaemnmmmms ©°  ososanot 1 v or s resney oty
learned to be approximately

; - e Figure: Histograms for the distribution of
invariant based on training data,

the modulus of Fourier features over each

indicat_ing that Aeroso| data ~ frequency w for the Aerosol data (test set);

potentially has irrelevant SPD noise Green: Random Fourier Features (with the

components (“cloudy pixels”) kernel bandwidth optimised on training
data)

Bottom Blue: Learned Fourier features;
Left: Original test set; Right: Test set with
(additional) noise.
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Summary

@ When measuring nonparametric distances between distributions, can we
disentangle the differences in noise from the differences in the signal?
o We considered two different ways to encode invariances to symmetric noise:
e MMD for asymmetry (not discussed in the talk) in paired sample differences,
MMD(X —Y,Y — X), which can be used to construct a two-sample test up
to symmetric noise.
e weighted distance between the empirical phase functions for learning
algorithms on distribution inputs which are robust to measurement noise and
covariate shift.
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