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Supervised vs unsupervised learning?

So far we have been thinking of learning schemes made in two steps

f(x) = 〈w,Φ(x)〉F , ∀x ∈ X

I unsupervised learning of Φ

I supervised learning of w

But can we perform only one learning step?
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In practice all is multi-layer!

(an old slide)

Typical data representation schemes, e.g. in vision or speech, involve
multiple stages (layers).

Pipeline
Raw data are often processed:

I first computing some of low level features,

I then learning some mid level representation,

I . . .

I finally using supervised learning.

These stages are often done separately, but is it possible to design
end-to-end learning systems?
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In practice all is (becoming) deep-learning!

(updated slide)

Typical data representation schemes e.g. in vision or speech, involve
deep learning.

Pipeline

I Design some wild- but “differentiable” hierarchical architecture.

I Proceed with end-to-end learning!!

Ok, maybe not all is deep learning but let’s take a look
L.Rosasco, RegML 2016



Shallow nets

f(x) = 〈w,Φ(x)〉 , x 7→ Φ(x)︸ ︷︷ ︸
Fixed

Empirical Risk Minimization (ERM)

min
w

1

n

n∑

i=1

(yi − 〈w,Φ(xi)〉)2
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Neural Nets

Basic idea of neural networks: functions obtained by composition.

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

Let d0 = d and

Φ` : Rd`−1 → Rd` , ` = 1, . . . , L

and in particular
Φ` = σ ◦W`, ` = 1, . . . , L

where
W` : Rd`−1 → Rd` , ` = 1, . . . , L

linear/affine and σ is a non linear map acting component-wise

σ : R→ R.
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Deep neural nets

f(x) = 〈w,ΦL(x)〉 , ΦL = ΦL ◦ · · · ◦ Φ1︸ ︷︷ ︸
compositional representation

Φ1 = σ ◦W1 . . . ΦL = σ ◦WL

ERM

min
w,(Wj)j

1

n

n∑

i=1

(yi − 〈w,ΦL(xi)〉)2
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Neural networks terminology

ΦL(x) = σ(WL . . . σ(W2σ(W1x)))

I Each intermediate representation corresponds to a (hidden) layer

I The dimensionalities (d`)` correspond to the number of hidden
units

I the non linearity is called activation function
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Neural networks illustrated

y

W

x

I Each neuron compute an inner product based on a column of a
weight matrix W

I The non-linearity σ is the neuron activation function.
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Activation functions

I logistic function s(α) = (1 + e−α)−1, α ∈ R,

I hyperbolic tangent s(α) = (eα − e−α)/(eα + e−α), α ∈ R,

I hinge s(α) = |s|+, α ∈ R.

Note:
-If the activation is chosen to be linear the architecture is equivalent to
one layer.
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Neural networks function spaces

Consider the non linear space of functions of the form fw,(W`)` : X → R,

fw,(W`)`(x) =
〈
w,Φ(W`)`(x)

〉
, Φ(W`)` = σ(WL . . . σ(W2σ(W1x)))

Very little structure, but we can :

I train by gradient descent (next)

I get (some) approximation/statistical guarantees (later)
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One layer neural networks

Consider only one hidden layer:

fw,W (x) = 〈w, σ(Wx)〉 =

u∑

j=1

wjσ
(〈
W j , x

〉)

typically optimized given supervised data

1

n

n∑

i=1

(yi − fw,W (xi))
2,

possibly with norm constraints on the weights (regularization).

Problem is non-convex! (maybe possibly smooth depending on σ)
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Back-propagation

Empirical risk minimization,

min
w,W
Ê(w,W ), Ê(w,W ) =

n∑

i=1

(yi − f(w,W )(xi)))
2.

An approximate minimizer is computed via the following update rules

wt+1
j = wtj − γt

∂Ê
∂wj

(wt,W t)

W t+1
j,k = W t

j,k − γt
∂Ê

∂Wj,k
(wt+1,W t)

where the step-size (γt)t is often called learning rate.
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Back-propagation & chain rule

Direct computations show that:

∂Ê
∂wj

(w,W ) = −2

n∑

i=1

(yi − f(w,W )(xi)))︸ ︷︷ ︸
∆j,i

hj,i

∂Ê
∂Wj,k

(w,W ) = −2

n∑

i=1

(yi − f(w,W )(xi)))wjσ
′(〈wj , x〉)︸ ︷︷ ︸

ηi,k

xki

Back-prop equations: ηi,k = ∆j,icjs
′(〈wj, x〉)

Using above equations, the updates are performed in two steps:

I Forward pass compute function values keeping weights fixed,

I Backward pass compute errors and propagate

I Hence the weights are updated.
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Few remarks

I Multiple layers can be analogously considered

I Batch gradients descent can be replaced by stochastic gradient.

I Faster iterations are available, e.g. variable metric/accelerated
gradient. . . .

I Online update rules are potentially biologically plausible– Hebbian
learning rules describing neuron plasticity.
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Computations

min
w,W
Ê(w,W ), Ê(w,W ) =

n∑

i=1

(yi − f(w,W )(xi)))
2.

In practice, no access to f̂u but only to approximate minimizers.

Convex vs. Nonconvex Optimization

Unique optimum: global/local. Multiple local optima
I Non-convex problem
I Convergence of back-prop to a reasonable local minimum can

depend heavily on the initialization.
I Empirically: the more the layers the easier to find good minima.

L.Rosasco, RegML 2016



An older idea: pre-training and unsupervised learning

Pre-training

I Use unsupervised training of each layer to initialize supervised
training.

I Potential benefit of unlabeled data.
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Auto-encoders

W

x

x

I A neural network with one input layer, one output layer and one
(or more) hidden layers connecting them.

I The output layer has equally many nodes as the input layer,

I It is trained to predict the input rather than some target output.
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Auto-encoders (cont.)

An auto encoder with one hidden layer of k units, can be seen as a
representation-reconstruction pair:

Φ : X → Fk, Φ(x) = σ (Wx) , ∀x ∈ X

with Fk = Rk, k < d and

Ψ : Fk → X , Ψ(β) = σ (W ′β) , ∀β ∈ Fk.
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Auto-encoders & dictionary learning

Φ(x) = σ (Wx) , Ψ(β) = σ (W ′β)

I The above formulation is closely related to dictionary learning.

I The weights can be seen as dictionary atoms.

I Reconstructive approaches have connections with so called energy
models [LeCun et al.. . . ]

I Possible probabilistic/Bayesian interpretations/variations (e.g.
Boltzmann machine [Hinton et al.. . . ])
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Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al ’06]. . .

(Φ1 ◦Ψ1)︸ ︷︷ ︸
Autoencoder

◦(Φ2 ◦Ψ2) · · · ◦ (Φ` ◦Ψ`)

. . . with the potential of obtaining richer representations.
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Beyond reconstruction

In many applications the connectivity of neural networks is limited in a
specific way.

I Weights in the first few layers have smaller support and are
repeated.

I Subsampling (pooling) is interleaved with standard neural nets
computations.

The obtained architectures are called convolutional neural networks.
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Convolutional layers

Consider the composite representation

Φ : X → F , Φ = σ ◦W,
with

I representation by filtering W : X → F ′,
I representation by pooling σ : F ′ → F .

Note: σ,W are more complex than in standard NN.
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Convolution and filtering

The matrix W is made of blocks

W = (Gt1 , . . . , GtT )

each block is a convolution matrix obtained transforming a vector
(template) t, e.g.

Gt = (g1t, . . . , gN t).

e.g.

Gt =




t1 t2 t3 . . . td

td t1 t2 . . . td−1

td−1 td t1 . . . td−2

. . . . . . . . . . . . . . . . . . . . . . . .
t2 t3 t4 . . . t1




For all x ∈ X ,
W (x)(j, i) = 〈gitj , x〉 .
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Pooling

The pooling map aggregates (pools) the values corresponding to the
same transformed template

〈g1t, x〉 , . . . , (〈gN t, x〉 ,
and can be seen as a form of subsampling.
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Pooling functions

Given a template t, let

β = (s(〈g1t, x〉), . . . , s(〈gN t, x〉)) .

for some non-linearity s, e.g. s(·) = | · |+.

Examples of pooling

I max pooling
max

j=1,...,N
βj ,

I average pooling

1

N

N∑

j=1

βj ,

I `p pooling

‖β‖p =




N∑

j=1

|βj |p



1
p

.
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Why pooling?

The intuition is that pooling can provide some form of robustness and
even invariance to the transformations.

Invariance & selectivity

I A good representation should be invariant to semantically
irrelevant transformations.

I Yet, it should be discriminative with respect to relevant
information (selective).
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Basic computations: simple & complex cells

(Hubel, Wiesel ’62)

I Simple cells
x 7→ 〈x, g1t〉 , . . . , 〈x, gN t〉

I Complex cells

〈x, g1t〉 , . . . , 〈x, gN t〉 . . . , 〈x, gN t〉 7→
∑

g

| 〈x, gt〉 |+
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Basic computations: convolutional networks

(Le Cun ’88)

I Convolutional filters

x 7→ 〈x, g1t〉 , . . . , 〈x, gN t〉

I Subsampling/pooling

〈x, g1t〉 , . . . , 〈x, gN t〉 . . . , 〈x, gN t〉 7→
∑

g

| 〈x, gt〉 |+
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Deep convolutional networks

498 Y. LeCun

Fig. 2. A convolutional network architecture, which is a particular instance of the multi-stage
architecture shown above

The role of layer 1 is to decorrelate variables and accentuate the differences (or
ratios) between them, while eliminating variations of the absolute energy so that the
non-linearity of layers 3 can always operate at its sweet spot. Decorrelation (and mean
removal) has the additional advantage of accelerating gradient-based learning [8].

Layer 2 and 3 detect conjunctions of features or motifs on the previous stage. Its role
is to non-linearly embed the input into a higher-dimensional space, so that inputs that
are semantically different are likely to be represented by different patterns of activity.
This expansion plays a similar role as using a non-linear kernel functions in a kernel
machine: in high-dimensional spaces, categories are easier to separate. More generally,
a function of interest is more likely to be linear when its input variable is embedded in a
high dimensional space. The difference with kernel machine is that our filter banks will
be trained from data, rather than simply selected from the training set.

Layer 4 serves to merge semantically similar things that have been partitioned into
different patterns of activity by the simple cells. This is where invariance is built.
Rather than producing invariance in the mathematical sense, the pooling layer merely
“smoothes out” the input-output mapping so that irrelevant variations in the input affect
the output smoothly, and in ways that can be easily dealt with (eliminated, if necessary).
The pooling operation can consist of any symmetric aggregation function, such as an
average, a max, a log-mixture (log

∑
i exi), or an Lp norm ( p

√∑
i |xi|p), particularly

with p = 1, 2, or ∞ (max). A theoretical analysis of pooling operations suggests that
L∞ is best when the features are sparse and the number of pooled variable is small,
while average, L1 or L2 are best when the features are less sparse or the pooling area is
large [9]. In practice L2 pooling is a good tradeoff.

One may interpret the filter bank and non-linearity as conjunction operators (similar
to logical AND or NAND in the boolean case) and the pooling operation as a sort of dis-
junction operator (similar to a logical OR), making a single stage a kind of non-boolean
Disjunctive Normal Form.

1.2 Convolutional Architectures

Data from natural sensors often comes to us as multi-dimensional arrays in which lo-
cal group of values are correlated, and the local statistics are invariant to the particular

Filtering Pooling

Filtering Pooling

First 
Layer

Second 
Layer

Input Output
Classifier

In practice:

I multiple convolution layers are stacked,

I pooling is not global, but over a subset of transformations
(receptive field),

I the receptive fields size increases in higher layers.
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A biological motivation

Visual cortex
The processing in DCN has
analogies with computational
neuroscience models of the
information processing in the
visual cortex see [Poggio et al.
. . . ].

Classification 
units

PIT/AIT

V4/PIT

V2/V4

V1/V2

Figure 2: Sketch of the Hmax hierarchical model of visual processing:
Acronyms: V1, V2 and V4 correspond to primary, second and fourth visual
areas, PIT and AIT to posterior and anterior inferotemporal areas, respectively
(tentative mapping with areas of the visual cortex shown in color, some areas
of the parietal cortex and dorsal streams not shown). The model relies on
two types of computations: A max-like operation (shown in dash circles) over
similar features at di↵erent position and scale to gradually build tolerance to
position and scale and a bell-shaped tuning operation (shown in plain circle) over
multiple features to increase the complexity of the underlying representation.
Since it was originally developed Riesenhuber and Poggio (1999), the model has
been able to explain a number of new experimental data (Serre et al., 2007).
This includes data that were not used to derive or fit model parameters. The
model seems to be qualitatively and quantitatively consistent with (and in some
cases actually predicts) several properties of subpopulations of cells in V1, V4,
IT, and PFC as well as fMRI and psychophysical data (see Serre and Poggio,
2010, for a recent review).

5
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Theory

ΦL(x) = σ(WL . . . σ(W2(σ(W1x)))

I No pooling: metric properties of networks with random weights –
connection with compressed sensing [Giryes et al. ’15]

I Invariance

x′ = gx⇒ Φ(x′) = Φ(x)

[Anselmi et al. ’12, R. Poggio ’15, Mallat ’12, Soatto, Chiuso ’13]
and covariance for multiple layers [Anselmi et al. ’12].

I Selectivity/Maximal Invariance, i.e. injectivity modulo
transformations

Φ(x′) = Φ(x)⇒ x′ = gx

[R. Poggio ’15, Soatto, Chiuso ’15]

L.Rosasco, RegML 2016



Theory

ΦL(x) = σ(WL . . . σ(W2(σ(W1x)))

I No pooling: metric properties of networks with random weights –
connection with compressed sensing [Giryes et al. ’15]

I Invariance

x′ = gx⇒ Φ(x′) = Φ(x)

[Anselmi et al. ’12, R. Poggio ’15, Mallat ’12, Soatto, Chiuso ’13]
and covariance for multiple layers [Anselmi et al. ’12].

I Selectivity/Maximal Invariance, i.e. injectivity modulo
transformations

Φ(x′) = Φ(x)⇒ x′ = gx

[R. Poggio ’15, Soatto, Chiuso ’15]

L.Rosasco, RegML 2016



Theory

ΦL(x) = σ(WL . . . σ(W2(σ(W1x)))

I No pooling: metric properties of networks with random weights –
connection with compressed sensing [Giryes et al. ’15]

I Invariance

x′ = gx⇒ Φ(x′) = Φ(x)

[Anselmi et al. ’12, R. Poggio ’15, Mallat ’12, Soatto, Chiuso ’13]
and covariance for multiple layers [Anselmi et al. ’12].

I Selectivity/Maximal Invariance, i.e. injectivity modulo
transformations

Φ(x′) = Φ(x)⇒ x′ = gx

[R. Poggio ’15, Soatto, Chiuso ’15]

L.Rosasco, RegML 2016



Theory (cont.)

I Similarity preservation

‖Φ(x′)− Φ(x)‖ � min
g
‖x′ − gx‖???

I Stability to diffeomorphisms [Mallat, ’12]

‖Φ(x)− Φ(d(x))‖ . ‖d‖∞ ‖x‖

I Reconstruction: connection to phase retrieval/one bit compressed
sensing [Bruna et al ’14].
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This class

I Neural nets

I Autoencoders

I Convolutional neural nets

L.Rosasco, RegML 2016



FINE
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