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ABOUT THIS CLASS

GOAL To introduce two main examples of Tikhonov
regularization algorithms, deriving and comparing
their computational properties.
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BASICS: DATA

Training set: S = {(x1, y1), . . . , (xn, yn)},
xi ∈ Rd , i = 1, . . . ,n
Inputs: X = {x1, . . . , xn}.
Labels: Y = {y1, . . . , yn}.
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BASICS: RKHS, KERNEL

RKHS H with a positive semidefinite kernel function K :

linear: K (xi , xj) = xT
i xj

polynomial: K (xi , xj) = (xT
i xj + 1)d

gaussian: K (xi , xj) = exp

(
−
||xi − xj ||2

σ2

)

Define the kernel matrix K to satisfy Kij = K (xi , xj).
The kernel function with one argument fixed is
Kx = K (x , ·).
Given an arbitrary input x∗, Kx∗ is a vector whose i th entry
is K (xi , x∗).
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TIKHONOV REGULARIZATION

We are interested into studying Tikhonov Regularization

argmin
f∈H

{
n∑

i=1

V (yi , f (xi)) + λ‖f‖2H}.
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REPRESENTER THEOREM

The representer theorem guarantees that the solution can be
written as

f =
n∑

j=1

cjKxj

for some c = (c1, . . . , cn) ∈ Rn.
So Kc is a vector whose i th element is f (xi):

f (xi) =
n∑

j=1

cjKxi (xj) =
n∑

j=1

cjKij

and ‖f‖2H = cT Kc.
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RKHS NORM AND REPRESENTER THEOREM

Since f =
∑n

j=1 cjKxj , then

‖f‖2H = 〈f , f 〉H

= 〈
n∑

i=1

ciKxi ,

n∑
j=1

cjKxj 〉H

=
n∑

i=1

n∑
j=1

cicj〈Kxi ,Kxj 〉H

=
n∑

i=1

n∑
j=1

cicjK (xi , xj) = ctKc
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PLAN

RLS
dual problem
regularization path
linear case

SVM
dual problem
linear case
historical derivation
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THE RLS PROBLEM

Goal: Find the function f ∈ H that minimizes the weighted sum
of the square loss and the RKHS norm

argmin
f∈H

{ 1
2n

n∑
i=1

(f (xi)− yi)
2 +

λ

2
||f ||2H}.
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RLS AND REPRESENTER THEOREM

Using the representer theorem the RLS problem is:

argmin
c∈Rn

1
2n
‖Y− Kc‖22 +

λ

2
cT Kc

The above functional is differentiable, we can find the minimum
setting the gradient w.r.t c to 0:

−K(Y− Kc) + λnKc = 0
(K + λnI)c = Y

c = (K + λnI)−1Y

We find c by solving a system of linear equations.
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SOLVING RLS FOR FIXED PARAMETERS

(K + λnI)c = Y.

The matrix K + λnI is symmetric positive definite (with
λ > 0), so the appropriate algorithm is Cholesky
factorization.
In Matlab, the operator \ seems to be using Cholesky, so
you can just write c = (K +lambda*n*I)\Y;
To be safe (or in Octave)
R = chol(K +lambda*n*I); c = (R\(R’\Y)); .

The above algorithm has complexity O(n3).
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THE RLS SOLUTION, COMMENTS

c = (K + λnI)−1Y

The prediction at a new input x∗ is:

f (x∗) =
n∑

j=1

cjKxj (x∗)

= Kx∗c
= Kx∗G−1Y,

where G = K + λnI.
Note that the above operation is O(n2).
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RLS REGULARIZATION PATH

Typically we have to choose λ and hence to compute the
solutions corresponding to different values of λ.

Is there a more efficent method than solving
c(λ) = (K + λnI)−1Y anew for each λ?

Form the eigendecomposition K = QΛQT , where Λ is
diagonal with Λii ≥ 0 and QQT = I.
Then

G = K + λnI
= QΛQT + λnI
= Q(Λ + λnI)QT ,

which implies that G−1 = Q(Λ + λnI)−1QT .
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RLS REGULARIZATION PATH CONT’D

O(n3) time to solve one (dense) linear system, or to
compute the eigendecomposition (constant is maybe 4x
worse). Given Q and Λ, we can find c(λ) in O(n2) time:

c(λ) = Q(Λ + λnI)−1QT Y,

noting that (Λ + λnI) is diagonal.
Finding c(λ) for many λ’s is (essentially) free!
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PARAMETER CHOICE

idea: try different λ and see which one performs best
How to try them? A simple choice is to use a validation set
of data
If we have "enough" training data we may sample out a
training and a validation set.
Otherwise a common practice is K-fold Cross Validation
(KCV):

1 Divide data into K sets of equal size: S1, . . . ,Sk
2 For each i train on the other K − 1 sets and test on the i th

set

If K = n we get the leave-one-out strategy (LOO)
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PARAMETER CHOICE

Notice that some data should always be kept aside to be
used as test set, to test the generalization performance of
the system after parameter tuning took place

Entire set of data 

TRAINING TESTVALIDATION
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THE LINEAR CASE

The linear kernel is K (xi , xj) = xT
i xj .

The linear kernel offers many advantages for computation.
Key idea: we get a decomposition of the kernel matrix for
free: K = XXT

— where X = [x>1 , . . . , x
>
n ] is the data matrix n × d

In the linear case, we will see that we have two different
computation options.
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LINEAR KERNEL, LINEAR FUNCTION

With a linear kernel, the function we are learning is linear as
well:

f (x∗) = Kx∗c
= xT

∗ XT c
= xT

∗ w ,

where we define w to be XT c.
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LINEAR KERNEL CONT.

For the linear kernel,

min
c∈Rn

1
2n
||Y− Kc||22 +

λ

2
cT Kc

= min
c∈Rn

1
2n
||Y− XXT c||22 +

λ

2
cT XXT c

= min
w∈Rd

1
2n
||Y− Xw ||22 +

λ

2
||w ||22.

Taking the gradient with respect to w and setting it to zero

XT Xw − XT Y + λnw = 0

we get
w = (XT X + λnI)−1XT Y.
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SOLUTION FOR FIXED PARAMETER

w = (XT X + λnI)−1XT Y.

Choleski decomposition allows us to solve the above problem
in O(d3) for any fixed λ.

We can work with the covariance matrix XT X ∈ Rd×d .
The algorithm is identical to solving a general RLS problem
replacing the kernel matrix by XT X and the labels vector by
XT y .

We can classify new points in O(d) time, using w , rather than
having to compute a weighted sum of n kernel products (which
will usually cost O(nd) time).
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REGULARIZATION PATH VIA SVD

To compute solutions corresponding to multiple values of λ we
can again consider an eigendecomposition/svd.

We need O(nd) memory to store the data in the first place.
The SVD also requires O(nd) memory, and O(nd2) time.

Compared to the nonlinear case, we have replaced an O(n)
with an O(d), in both time and memory. If n >> d , this can
represent a huge savings.
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SUMMARY SO FAR

When can we solve one RLS problem? (I.e. what are the
bottlenecks?)

We need to form K, which takes O(n2d) time and O(n2)
memory. We need to perform a Cholesky factorization or
an eigendecomposition of K, which takes O(n3) time.
In the linear case we have replaced an O(n) with an O(d),
in both time and memory. If n >> d , this can represent a
huge savings.
Usually, we run out of memory before we run out of
time.
The practical limit on today’s workstations is
(more-or-less) 10,000 points (using Matlab).
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PLAN

RLS
dual problem
regularization path
linear case
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dual problem
linear case
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THE HINGE LOSS

The support vector machine (SVM) for classification arises
considering the hinge loss

V (f (x), y) ≡ (1− yf (x))+,

where (s)+ ≡ max(s,0).

3 2 1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

y * f(x)

H
in

ge
 L

os
s

Regularization Methods for High Dimensional Learning RLS and SVM



SVM STANDARD NOTATION

With the hinge loss, our regularization problem becomes

argmin
f∈H

1
n

n∑
i=1

(1− yi f (xi))+ + λ‖f‖2H.

In most of the SVM literature, the problem is written as

argmin
f∈H

C
n∑

i=1

(1− yi f (xi))+ +
1
2
‖f‖2H.

The formulations are equivalent setting C = 1
2λn .

This problem is non-differentiable (because of the “kink” in V ).
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SLACK VARIABLES FORMULATION

We rewrite the functional using slack variables ξi .

argmin
f∈H

C
∑n

i=1 ξi + 1
2‖f‖

2
H

subject to : ξi ≥ 1− yi f (xi) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n

Applying the representer theorem we get a constrained
quadratic programming problem:

argmin
c∈Rn,ξ∈Rn

C
∑n

i=1 ξi + 1
2cT Kc

subject to : ξi ≥ 1− yi
∑n

j=1 cjK (xi , xj) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n
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HOW TO SOLVE?

argmin
c∈Rn,ξ∈Rn

C
∑n

i=1 ξi + 1
2cT Kc

subject to : ξi ≥ 1− yi(
∑n

j=1 cjK (xi , xj)) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n

This is a constrained optimization problem. The general
approach:

Form the primal problem – we did this.
Lagrangian from primal – just like Lagrange multipliers.
Dual – one dual variable associated to each primal
constraint in the Lagrangian.
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THE PRIMAL AND DUAL PROBLEMS

argmin
c∈Rn,ξ∈Rn

C
∑n

i=1 ξi + 1
2cT Kc

subject to : ξi ≥ 1− yi(
∑n

j=1 cjK (xi , xj)) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n

max
α∈Rn

∑n
i=1 αi − 1

2α
T (diagY)K(diagY)α

0 ≤ αi ≤ C i = 1, . . . ,n

The dual problem is easier to solve: simple box constraints.
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SUPPORT VECTORS

Basic idea: solve the dual problem to find the optimal α’s,
and use them to find c

ci = αiyi

The dual problem is easier to solve than the primal
problem. It has simple box constraints and a single
equality constraint, and the problem can be decomposed
into a sequence of smaller problems.
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OPTIMALITY CONDITIONS

All optimal solutions (c, ξ) to the primal problem must satisfy
the following conditions for some (α, ζ):

∂L
∂ci

=
n∑

j=1

cjK (xi , xj)−
n∑

j=1

yiαjK (xi , xj) = 0 i = 1, . . . ,n

∂L
∂ξi

= C − αi − ζi = 0 i = 1, . . . ,n

yi(
n∑

j=1

yjαjK (xi , xj))− 1 + ξi ≥ 0 i = 1, . . . ,n

αi [yi(
n∑

j=1

yjαjK (xi , xj))− 1 + ξi ] = 0 i = 1, . . . ,n

ζiξi = 0 i = 1, . . . ,n
ξi , αi , ζi ≥ 0 i = 1, . . . ,n
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OPTIMALITY CONDITIONS

They are also known as the Karush-Kuhn-Tucker (KKT)
conditions.
These optimality conditions are both necessary and
sufficient for optimality: (c, ξ, α, ζ) satisfy all of the
conditions if and only if they are optimal for both the primal
and the dual.
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OPTIMALITI CONDITIONS
INTERPRETING THE SOLUTION

Solution

f (x) =
n∑

i=1

yiαiK (x , xi)

From the KKT conditions we can derive the following:

αi = 0 =⇒ yi f (xi) ≥ 1
0 < αi < C =⇒ yi f (xi) = 1

αi = C =⇒ yi f (xi) ≤ 1

αi = 0 ⇐= yi f (xi) > 1
αi = C ⇐= yi f (xi) < 1
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THE GEOMETRIC APPROACH

The “traditional” approach to describe SVM is to start with
the concepts of separating hyperplanes and margin.
The theory is usually developed in a linear space,
beginning with the idea of a perceptron, a linear
hyperplane that separates the positive and the negative
examples.
Defining the margin as the distance from the hyperplane to
the nearest example, the basic observation is that
intuitively, we expect a hyperplane with larger margin to
generalize better than one with smaller margin.
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LARGE AND SMALL MARGIN HYPERPLANES

(a) (b)
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GEOMETRICAL MARGIN
SEPARABLE CASE

For simplicity we consider the linear separable case

Consider the decision surface
D = {x : w>x = 0}
Given a point xi its projection on the
decision surface is x ′i = xi − β w

||w || .

w>xi − β
w
||w ||

= 0 iff β = yi
w>

||w ||
x

β is often called a geometrical margin which is scale invariant.
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MAXIMIZING THE MARGIN
SEPARABLE CASE

βw = mini=1...n βi

max
w∈Rd

βw

subject to βw ≥ 0
||w || = 1
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MAXIMIZING THE MARGIN
SEPARABLE CASE

βw = mini=1...n βi

max
w∈Rd

βw

subject to yi
w>

||w ||
xi ≥ βw

||w || = 1, βw ≥ 0
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MAXIMIZING THE MARGIN
SEPARABLE CASE

we consider α = βw ||w ||,
because of the scale invariance
we may set α = 1, thus we obtain

max
w∈Rd

1
||w ||

subject to yiw>xi ≥ 1

or equivalently

min
w∈Rd

1
2
||w ||2

subject to yiw>xi ≥ 1
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MAXIMIZING THE MARGIN
NON SEPARABLE CASE

Non-separable means there are points on the wrong side of the
margin, i.e.

∃i s.t. yiw>xi < 1 .

We add slack variables to account for the wrongness:

argmin
ξi ,w

∑n
i=1 ξi + 1

2‖w‖
2

s.t. yiw>xi ≥ 1− ξi , ∀i
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GEOMETRIC INTERPRETATION OF REDUCED

OPTIMALITY CONDITIONS

αi = 0 =⇒ yi f (xi) ≥ 1
0 < αi < C =⇒ yi f (xi) = 1

αi = C =⇒ yi f (xi) ≤ 1

αi = 0 ⇐= yi f (xi) > 1
αi = C ⇐= yi f (xi) < 1
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ADDING A BIAS TERM

The original SVM formulation
includes a bias term, so that
f (x) = w>x + b
This amounts at adding a further
constraint

∑n
i=1 yiαixi = 0
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SVM - SUMMARY

The SVM is a Tikhonov regularization problem, with the
hinge loss.
Solving the SVM means solving a constrained quadratic
program, roughly O(n3)

It’s better to work with the dual program.

Solutions can be sparse – few non-zero coefficients, this
can have impact for memory and computational
requirements.
The non-zero coefficients correspond to points not
classified correctly enough – a.k.a. “support vectors.”
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MULTI-OUTPUT

In many practical problems, it is convenient to model the
object of interest as a function with multiple outputs.
In machine learning, this problem typically goes under the
name of multi-output learning.
A possible approach is to do re-write penalized empirical
risk minimization

min
f 1,...,f T

ERR[f 1, . . . , f T ] + λPEN(f 1, . . . , f T )

Typically
The error term is the sum of the empirical risks.
The penalty term enforces similarity among the tasks.
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MULTI-CLASS

MULTI-CLASS CODING

A classical problem is multi-category classification where each
input can be assigned to one of T classes.

We can consider T labels Y = {1,2, . . .T}: this choice
forces an unnatural ordering among classes

We can define a coding, that is a one-to-one map
C : Y → Y where Y = (`1, . . . , `T ) are a set of coding
vectors
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MULTI-CLASS AND MULTI-LABEL

MULTI-CLASS

In multi-category classification each input can be assigned to
one of T classes. We can think of encoding each class with a
vector, for example: class one can be (1,0 . . . ,0), class 2
(0,1 . . . ,0) etc.

MULTILABEL

Images contain at most T objects each input image is
associate to a vector

(1,0,1 . . . ,0)

where 1/0 indicate presence/absence of the an object.
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MULTI-CLASS RLS - ONE VS ALL

Consider the coding where class 1 is (1,−1, . . . ,−1), class 2 is
(−1,1, . . . ,−1) ...

One can easily check that the problem

min
f1,...,fT

{1
n

T∑
j=1

n∑
i=1

(y j
i − f j(xi))2 + λ

T∑
j=1

‖f j‖2K

is exactly the one versus all scheme with regularized least
squares.
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MULTI-CLASS RLS - SOLUTION

(K + λnI)W = Y

with W a d × T matrix and Y a n × T matrix whose i-th column
contains 1s if input belongs to class i , −1 otherwise.

The classification rule can be written as

c : X → {1, ...,T}

c(x) = arg max
t=1,...,T

n∑
j=1

W t
i K (x , xi)
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