

Effective machine learning made easy

Alessandro Rudi

Carlo Ciliberto and Lorenzo Rosasco

MLCC 2015

GURLS Automates this boring part!

Multiple "Depths"

Casual User

Advanced User

Machine Learner

GURLS as a Casual User

model = gurls_train(Xtr, ytr)
ypred = gurls_test(model,Xts)

What if we wanted to change... e.g. the kernel?

ypred = gurls_test(model,Xts)

General Parameters Feeding Syntax

ypred = gurls_test(model,Xts)

Features of the Library

Algoritms

- KRLS with
 - Tikhonov
 - Landweber
 - Nu-method
 - Truncated-SVD
 - Conjugate Gradient
- Kernel Logistic Regression
- Gaussian Processes
- Random Features

Kernels

- Linear
- Polynomial
- RBF
- Chisquared
- Quasi-periodic

Model Selection

- Performance Measures:
 - RMSE
 - Macroavg
 - Precision/Recall
- Automatic Parameter Tuning:
 - Automatic split & randomization
 - Hold out
 - Leave-one out
 - k-fold
- Automatic Range for Hyperparameters:

MATLAB & C++ Interfaces

Example

0.6

0.4

0.2

0.8

1

1.2

1.4

1.6

KRLS - RBF Kernel Linear RLS Landweber Filter 1.8 _L 1.8 r 000 °°° °°° °°° 00 00 00 ⁶⁰0 0 1.6 1.6 00 00 0 0 0 0 1.4 1.4 00 00 8 000 000 00 1.2 0 1.2 0 1 1 0 0 0 0 0.8 0.8 0 0 0 0 0.6 0.6 000 000 0.4 0.4 0 0 0 0 0 0 00 0 0.2 0.2 0 °0 00 0 0 0 L 0 0

0.6

0.2

0.4

0.8

1.2

1

1.4

1.6

Example

0.2

0 L 0

0.2

KRLS - RBF Kernel Linear RLS Landweber Filter 1.8 1.8 _L °°° °°° 0 0 00000 1.6 1.6 Ó õ ° 0 1.4 1.4 8 000 00 1.2 0 1.2 1 1 0 0.8 0.8 0 0.6 0.6 000 0.4

0

00

1.2

0

1

0.6

0.4

0.8

200

1.4

0 0

°0

1.6

0

0.4

Example

KRLS - RBF Kernel Landweber Filter

'kernelfun', 'rbf', 'filter', 'land')

gurls_train(Xtr, ytr, 'algorithm', 'lrls')

UNDER THE HOOD The Pipeline

Under the hood - The Pipeline

highly modular, i.e. reuse of code components

Under the hood - The Pipeline

highly modular, i.e. reuse of code components

Example: from gurls_train to the pipeline

gurls_train(Xtr, ytr,'algorithm','lrls')

Example: from gurls_train to the pipeline

```
gurls_train(Xtr, ytr,'algorithm','lrls')
```


With the pipeline...

```
opt = gurls_defopt('');
opt.seq = {'split:ho', 'paramsel:hoprimal', 'rls:primal'};
opt.process{1} = [2, 2, 2];
model = gurls(Xtr, ytr, opt, 1);
```

Examples with what we have seen

gurls_train(Xtr, ytr,'algorithm','krls','kernelfun','rbf','filter','land')

Examples with what we have seen

gurls_train(Xtr, ytr, 'algorithm', 'krls', 'kernelfun', 'rbf', 'filter', 'land')

With the pipeline...

```
opt = gurls_defopt('');
opt.newprop('paramsel.guesses' , 100);
opt.paramsel.optimizer = str2func('rls_landweberdual');
opt.kernel.func = str2func('kernel_rbf');
opt.seq = {'split:ho', 'paramsel:hokrls', 'kernel:rbf', 'rls:landweberdual'};
opt.process{1} = [2, 2, 2, 2];
```

```
model = gurls(Xtr, ytr, opt, 1);
```

Structure of a stage

```
gurls_train(Xtr, ytr, 'algorithm', 'lrls')
```


All stages have same interface

<stage>_<funcname>(X, y, opt)

All blocks have same interface

<stage>_<funcname>(X, y, opt)

```
function [kernel] = kernel_rbf(X, y, opt)
              Computes the kernel matrix for a Gaussian kernel.
         %
         %
                                           function [cfr] = rls_primal (X, y, opt)
              INPUTS:
          %
                   -OPT: struct with the
                                           % rls_primal(X,y,opt)
function [p] = perf_precrec(X,y, opt)
                                           % computes a classifier for the primal formulation of RLS.
                                           % The regularization parameter is set to the one found in opt.par
% perf_precrec(opt)
% pert_precrectope;
% Computes the average precision per class in case of multiclass problems, the regularizers need to be com
singlelambda function
                                           %
% INPUTS:
  -OPT: structure of options with the f % INPUTS:
                                          % -OPT: struct of options with the following fields:
    -y: labels matrix
%
    fields that need to be set through
                                              fields that need to be set through previous gurls tasks:
                                          %
%
        -pred (set by the pred_* routir %
                                                  - paramsel.lambdas (set by the paramsel_* routines)
%
                                              fields with default values set through the defopt function:
                                          %
%
% OUTPUT: struct with the following fit %
% -acc: array of prediction accuracy f
                                          %
                                              For more information on standard OPT fields
                                          %
% -forho: ""
                                              see also defopt
                                          °
% -forplot: ""
                                         %
%
                                         % OUTPUT: struct with the following fields:
% Code adapted from PASCAL VOC 2007 cc
                                         % -W: matrix of coefficient vectors of rls estimator for each alag
if icctruct(ont nred)
```

Results - Classification Benchmarks

Results - Classification Benchmarks

Results - Comparison with the state of the art

PubFig83

http://www.eecs.harvard.edu/ zak/pubfig83/

Package	Kernel	Accuracy	Time
GURLS	Linear	87%	0h13m
LIBSVM	Linear	76%	5h20m
GURLS	RBF with selection	88%	5h51m
GURLS	RBF = 25th PCT of DST	87%	0h14m
LIBSVM	RBF = 25th PCT of DST	76%	4h18m

Results - Object Recognition in Robotics

Download or Pull from Github: https://github.com/LCSL/GURLS

Reference Paper:

GURLS: a Least Squares Library for Supervised Learning.

A. Tacchetti, P. K. Mallapragada, M. Santoro and L. Rosasco Journal of Machine Learning Research

GitHub This reposit	ory Search	Explore Feat	ures Enterprise Blog	Sign up Sign in	
LCSL / GURLS			Watch 14	★ Star 34 ¥ Fork 2	
GURLS: a Least Squares	s Library for Supervised Learn	ing http://lcsl.mit.edu/gurls.	.html		
3 497 commits	₽ 2 branches	S 2 releases	11 contributors	<> Code	
verbose bug - fixed	GURLS / +			1) Pull requests	
alessandro-rudi authored 28 minutes ago latest			latest commit a7a5236edb 🗟		
bgurls++	updated bgurls++ cmakelists		9 months ago	Pulse	
bgurls	adds a demo for bGURLS that works without a distributed filesystem		stem 3 months ago		
cmake-modules	Fixes to CMakeLists and GurlsConfig		10 months ago	is ago	
dependencies	Fixes to cmakelists. External builds now have priority over local ins		ins 11 months ago	HTTPS clone URL	
evternal	Added safety checks: Added toolset identification:		2 years and	https://github.com	

This afternoon at **2PM**: a Lab to get acquainted with GURLS

+

A small machine learning challenge (just for fun)