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About this class

» We introduce a class of learning algorithms based on Tikhonov
regularization

» We study computational aspects of these algorithms .
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Empirical Risk Minimization (ERM)

» Empirical Risk Minimization (ERM): probably the most popular
approach to design learning algorithms.

» General idea: considering the empirical error

n

EU) = D i T )

as a proxy for the expected error

E(f) =E[(y, f(z))] = /da?dyp(x,y)f(yyf(ir))-
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The Expected Risk is Not Computable

Recall that
» ( measures the price we pay predicting f(z) when the true label is y

» £(f) cannot be directly computed, since p(x,y) is unknown
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From Theory to Algorithms: The Hypothesis Space

To turn the above idea into an actual algorithm, we:
» Fix a suitable hypothesis space H
» Minimize € over H

H should allow feasible computations and be rich, since the complexity
of the problem is not known a priori.
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Example: Space of Linear Functions

The simplest example of H is the space of linear functions:

H={f:R' 3R : Jwe R?such that f(z) = 27w, Vo € RY}.

» Each function f is defined by a vector w

> fo(z) =2Tw.
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Rich Hypothesis spaces May Require Regularization

» If H is rich enough, solving ERM may cause overfitting (solutions
highly dependent on the data)

» Regularization techniques restore stability and ensure generalization
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Tikhonov Regularization

Consider the Tikhonov regularization scheme,
min £(f,,) + Aw||® (1)
weRd

It describes a large class of methods sometimes called Regularization
Networks.
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The Regularizer

» ||w||? is called regularizer
» It controls the stability of the solution and prevents overfitting

» )\ balances the error term and the regularizer
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Minimal norm solution/interpolant

If A +— O we are considering
min ||w||
weM
where

M = argmin &(f,,)

weR?
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Loss Functions

» Different loss functions ¢ induce different classes of methods

» We will see common aspects and differences in considering different
loss functions

» There exists no general computational scheme to solve Tikhonov
Regularization

» The solution depends on the considered loss function
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The Regularized Least Squares Algorithm

Regularized Least Squares: Tikhonov regularization
4 ; 1<
min £(8) + Muly E(F) = 2Dt ful@)) (@)
i=1
Square loss function:

Uy, fu(r)) = (y — fw(x))z

We then obtain the RLS optimization problem (linear model):

1
min — Z(yl —whz)? + wlw, A>0. (3)
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Matrix Notation

» The n x d matrix X,,, whose rows are the input points

» The n x 1 vector Y,,, whose entries are the corresponding outputs.

With this notation,

1 1
= Z(yi —wlz;)? = =Y, - Xpwl?.
n < n
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Gradients of the ER and of the Regularizer

By direct computation,
» Gradient of the empirical risk w. r. t. w
2 o1
—=X, (Y, — Xp,w)
n
» Gradient of the regularizer w. r. t. w

2w
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The RLS Solution

By setting the gradient to zero, the solution of RLS solves the linear
system

(XX, + snDw = X"Y,.

A controls the invertibility of (X X,, + AnlI)
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Choosing the Cholesky Solver

» Several methods can be used to solve the above linear system

» Cholesky decomposition is the method of choice, since
XIX, + M

is symmetric and positive definite.
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Time Complexity

Time complexity of the method :

» Training: O(nd?) (assuming n >> d)

» Testing: O(d)
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Dealing with an Offset

For linear models, especially in low dimensional spaces, it is useful to
consider an offset:

wlz+b

How to estimate b from data?
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Idea: Augmenting the Dimension of the Input Space

» Simple idea: augment the dimension of the input space, considering
Z = (xz,1) and w = (w, b).

» This is fine if we do not regularize, but if we do then this method

tends to prefer linear functions passing through the origin (zero
offset), since the regularizer becomes:

lB]I* = flw]]* + b*.
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Avoiding to Penalize the Solutions with Offset

We want to regularize considering only ||w||?, without penalizing the
offset.

The modified regularized problem becomes:

n

. 1
o D (i —w e — ) + Aw|.

i=1
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Solution with Offset: Centering the Data

It can be proved that a solution w*, b* of the above problem is given by
b* _ g _ ij*

where

s
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Solution with Offset: Centering the Data

w* solves
1 n
: c T,.c\2 2
min — E (g5 —w x5)* + AMw]||®.
weRP N 4
i=1
where yf =y —yand z{ =x —Z foralli =1,...,n.

Note: This corresponds to centering the data and then applying the
standard RLS algorithm.
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Introducing: Regularized Logistic Regression

Regularized logistic regression: Tikhonov regularization

n

min £(u) + Ml E(fu) = = 3 Ui, fule)

i=1

With the logistic loss function:

g(y7 fw(flf')) = lOg(l + e_yfw(x))
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Iy, (<0

R R

The Logistic Loss Function

Logistic loss

Figure: Plot of the logistic regression loss function
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Minimization Through Gradient Descent

» The logistic loss function is differentiable

» The candidate to compute a minimizer is the gradient descent (GD)
algorithm
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Regularized Logistic Regression (RLR)

» The regularized ERM problem associated with the logistic loss is
called regularized logistic regression

» Its solution can be computed via gradient descent
> Note:

n

Vé(f) ==Y e

n

_yie_yim;‘rwt—l

n
) o1 Zx —Yi
vt T, [
—YiT; Wi—1 n Yil; We—1
= 1Tte - 1te
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RLR: Gradient Descent lteration

For wg = 0, the GD iteration applied to

in £(f,) + Mwl|?
Inin, (fw) + Mw]]

n
1
Wy = Wi—1 — 75 _
k K n - 1+eyﬂ? We—1

+ 22w 1)

a

fort=1,...T, where

= V(E(fu) + Allw]?)
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Logistic Regression and Confidence Estimation

» The solution of logistic regression has a probabilistic interpretation

» |t can be derived from the following model

ea:Tw
1+ ex"w
——

h(w)

p(l]z) =

where h is called logistic function.

» This can be used to compute a confidence for each prediction
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Support Vector Machines

Formulation in terms of Tikhonov regularization:

n

min £(fu) + Ml E(fu) = = 3 s, fule)

i=1

With the Hinge loss function:

g(yvfw(x)) = |1 - yfw(x)|+

o
IR
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A more classical formulation (linear case)

w* = min —Z 11— yiw "z + Mw]|?

with A = %

MLCC 2019

30



A more classical formulation (linear case)

C n
w* = min ||lw|?® + _Z& subject to
wER,£; >0 n =

yiw'z; >1—& Vie{l...n}
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A geometric intuition - classification

In general do you have many solutions

What do you select?
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A geometric intuition - classification

Intuitively | would choose an “equidistant” line
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A geometric intuition - classification

Intuitively | would choose an “equidistant” line
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Maximum margin classifier

| want the classifier that
> classifies perfectly the dataset

» maximize the distance from its closest examples
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Point-Hyperplane distance

How to do it mathematically? Let w our separating hyperplane. We have

Tr=qQw -+ x|

and z; =z — aw.

w

aw

o

Point-Hyperplane distance: d(z,w) = ||z ||
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Margin

An hyperplane w well classifies an example (z;,y;) if
» y;=1and w'z; >0o0r
> yi
therefore x; is well classified iff y;w " z; > 0
Margin: m; = y;w ' z;

Note that 2| =z — y‘fﬂ"w

—landw'az; <0
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Maximum margin classifier definition

| want the classifier that
> classifies perfectly the dataset
» maximize the distance from its closest examples

w* = max min d(z;,w)? subject to
weRd 1<i<n

m; >0 Vie{l...n}

Let call i the smallest m; thus we have

T2
w* = max min ||z — (2 w)

——— subject to
weRd 1<i<n,u>0 [|lw]|?

yow @ >p Vie{l...n}

that is
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w*

Computation of w*

2

= max min — subject to

weRd p>0  [lw]|?

yiw' x; >p Vi {l...n}
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Computation of w*

2
w* = max ——= subject to
weR?, 1>0 H’LUH2

yiw' x; >p Vie{l...n}

2 2
Note that if y;w " x; > u, then y;(cw) " 2; > ap and HZW = % for
any « > 0. Therefore we have to fix the scale parameter, in particular we

choose p = 1.
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Computation of w*

w* = subject to

max ——
wesd [[w]]?

yiw'xz; >1 Vie{l...n}
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Computation of w*

*

w* = min |lw||* subject to
weR?

yiw' z; >1 Vie{l...n}
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What if the problem is not separable?

We relax the constraints and penalize the relaxation

w* = min |lw||? subject to
weR?

yw' z; >1 Vie{l...n}
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What if the problem is not separable?

We relax the constraints and penalize the relaxation

O n
w* = min wl]? + = ; subject to
smin ol + 5356 b

yw z; >1 -6 Vie{l...n}

. . 1 —n
where C'is a penalization parameter for the average error = > " | &;.
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Dual formulation

It can be shown that the solution of the SVM problem is of the form

n
w = E QiYiTi
i=1

where «; are given by the solution of the following quadratic
programming problem:

n . _ Lo ool §o—
gg'ﬁ)ﬁ Zi:1az QZiJ:lyzy]aza]fCi-Tg i=1,...,n

subj to a; >0
» The solution requires the estimate of n rather than D coefficients

» «; are often sparse. The input points associated with non-zero
coefficients are called support vectors
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Wrapping up

Regularized Empirical Risk Minimization

n

1
 _ . 72 : S I 2
v wel]éld n i=1 g(y“w xl) ’ )\”wH

Examples of Regularization Networks
> ((y,t) = (y —t)? (Square loss) leads to Least Squares
> ((y,t) = log(1+ e ¥") (Logistic loss) leads to Logistic Regression
> ((y,t) = |1 — yt|;+ (Hinge loss) leads to Maximum Margin Classifier
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Next class

... beyond linear models!
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