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Prediction and Interpretability

I In many practical situations, beyond prediction, it is important to
obtain interpretable results

I Interpretability is often determined by detecting which factors allow
good prediction

We look at this question from the perspective of variable selection
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Linear Models

Consider a linear model

fw(x) = wTx =

v∑
i=1

wjxj

Here

I the components xjof an input can be seen as measurements (pixel
values, dictionary words count, gene expressions, . . . )

I Given data, the goal of variable selection is to detect which are
variables important for prediction

Key assumption: the best possible prediction rule is sparse, that is only
few of the coefficients are non zero
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Notation

We need some notation:

I Xn be the n by D data matrix

I i Xj ∈ Rn, j = 1, . . . , D its columns

I Yn ∈ Rn the output vector

MLCC 2019 13



Notation

We need some notation:

I Xn be the n by D data matrix

I i Xj ∈ Rn, j = 1, . . . , D its columns

I Yn ∈ Rn the output vector

MLCC 2019 14



Notation

We need some notation:

I Xn be the n by D data matrix

I i Xj ∈ Rn, j = 1, . . . , D its columns

I Yn ∈ Rn the output vector

MLCC 2019 15



High-dimensional Statistics

Estimating a linear model corresponds to solving a linear system

Xnw = Yn.

I Classically n� D low dimension/overdetermined system

I Lately n� D high dimensional/underdetermined system

Buzzwords: compressed sensing, high-dimensional statistics . . .
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Sparsity!

MLCC 2019 19



Brute Force Approach

Sparsity can be measured by the `0 norm

‖w‖0 = |{j | wj 6= 0}|

that counts non zero components in w

If we consider the square loss, it can be shown that a regularization
approach is given by

min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))2 + λ‖w‖0
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The Brute Force Approach is Hard

min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))2 + λ‖w‖0

The above approach is as hard as a brute force approach: considering
all training sets obtained with all possible subsets of variables (single,
couples, triplets... of variables)

The computational complexity is combinatorial. In the following we
consider two possible approximate approaches:

I greedy methods

I convex relaxation
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Greedy Methods Approach

Greedy approaches encompasses the following steps:

1. initialize the residual, the coefficient vector, and the index set

2. find the variable most correlated with the residual

3. update the index set to include the index of such variable

4. update/compute coefficient vector

5. update residual.

The simplest such procedure is called forward stage-wise regression in
statistics and matching pursuit (MP) in signal processing
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Initialization

Let r, w, I denote the residual, the coefficient vector, an index set,
respectively.

The MP algorithm starts by initializing the residual r ∈ Rn, the
coefficient vector w ∈ RD, and the index set I ⊆ {1, . . . , D}

r0 = Yn, , w0 = 0, I0 = ∅
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Selection

The variable most correlated with the residual is given by

k = arg max
j=1,...,D

aj , aj =
(rTi−1X

j)2

‖Xj‖2 ,

where we note that

vj =
rTi−1X

j

‖Xj‖2 = argmin
v∈R
‖ri−1−Xjv‖2, ‖ri−1−Xjvj‖2 = ‖ri−1‖2−aj
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Selection (cont.)

Such a selection rule has two interpretations:

I We select the variable with larger projection on the output, or
equivalently

I we select the variable such that the corresponding column best
explains the the output vector in a least squares sense
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Active Set, Solution and residual Update

Then, index set is updated as Ii = Ii−1 ∪ {k}, and the coefficients vector
is given by

wi = wi−1 + wk, wkk = vkek

where ek is the element of the canonical basis in RDwith k-th component
different from zero

Finally, the residual is updated

ri = ri−1 −Xwk
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Orthogonal Matching Pursuit

A variant of the above procedure, called Orthogonal Matching Pursuit, is
also often considered, where the coefficient computation is replaced by

wi = arg min
w∈RD

‖Yn −XnMIiw‖2,

where the D by D matrix MI is such that (MIw)
j = wj if j ∈ I and

(MIw)
j = 0 otherwise. Moreover, the residual update is replaced by

ri = Yn −Xnwi
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Theoretical Guarantees

If

I the solution is sparse, and

I the data matrix has columns ”not too correlated”

OMP can be shown to recover with high probability the right vector of
coefficients
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`1 Norm and Regularization

Another popular approach to find sparse solutions is based on a convex
relaxation
Namely, the `0 norm is replaced by the `1 norm,

‖w‖1 =

D∑
j=1

|wj |

In the case of least squares, one can consider

min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))2 + λ‖w‖1
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Convex Relxation

min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))2 + λ‖w‖1.

I The above problem is called LASSO in statistics and Basis Pursuit in
signal processing

I The objective function defining the corresponding minimization
problem is convex but not differentiable

I Tools from non-smooth convex optimization are needed to find a
solution

MLCC 2019 41



Iterative Soft Thresholding

A simple yet powerful procedure to compute a solution is based on the so
called iterative soft thresholding algorithm (ISTA):

w0 = 0, wi = Sλγ(wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)), i = 1, . . . , Tmax

At each iteration a non linear soft thresholding operator is applied to a
gradient step
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Iterative Soft Thresholding (cont.)

w0 = 0, wi = Sλγ(wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)), i = 1, . . . , Tmax

I the iteration should be run until a convergence criterion is met, e.g.
‖wi − wi−1‖ ≤ ε, for some precision ε, or a maximum number of
iteration Tmax is reached

I To ensure convergence we should choose the step-size

γ =
n

2‖XT
nXn‖
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Splitting Methods

In ISTA the contribution of error and regularization are split:

I the argument of the soft thresholding operator corresponds to a step
of gradient descent

2

n
XT
n (Yn −Xnwi−1)

I The soft thresholding operator depends only on the regularization
and acts component wise on a vector w, so that

Sα(u) = ||u| − α|+
u

|u| .
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Soft Thresholding and Sparsity

Sα(u) = ||u| − α|+
u

|u| .

The above expression shows that the coefficients of the solution
computed by ISTA can be exactly zero

This can be contrasted to Tikhonov regularization where this is hardly
the case

MLCC 2019 47



Soft Thresholding and Sparsity

Sα(u) = ||u| − α|+
u

|u| .

The above expression shows that the coefficients of the solution
computed by ISTA can be exactly zero

This can be contrasted to Tikhonov regularization where this is hardly
the case

MLCC 2019 48



Lasso meets Tikhonov: Elastic Net

Indeed, it is possible to see that:

I while Tikhonov allows to compute a stable solution, in general its
solution is not sparse

I On the other hand the solution of LASSO, might not be stable

The elastic net algorithm, defined as

min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))2 + λ(α‖w‖1 + (1− α)‖w‖22), α ∈ [0, 1] (2)

can be seen as hybrid algorithm which interpolates between Tikhonov
and LASSO
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ISTA for Elastic Net

The ISTA procedure can be adapted to solve the elastic net problem,
where the gradient descent step incorporates also the derivative of the `2

penalty term. The resulting algorithm is

w0 = 0,

for i = 1, . . . , Tmax

wi = Sλαγ((1− λγ(1− α))wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)),

To ensure convergence we should choose the step-size

γ =
n

2(‖XT
nXn‖+ λ(1− α))
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Wrapping Up

Sparsity and interpretable models

I greedy methods

I convex relaxation
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Next Class

unsupervised learning: dimensionality reduction!
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