MLCC 2018 Deep Learning

Lorenzo Rosasco UNIGE-MIT-IIT

What? Classification **Teaching What? Classification**
Teaching What? Classification

Object classification

What's in this image? What's in this image?

remote3 mug1 remote3 remote3 remote3 remote3 remote3 remote3 Note: beyond vision: classify graphs, strings, networks, time-series. . .

L.Rosasco

What makes the problem hard?

\blacktriangleright Viewpoint

 \blacktriangleright Semantic variability

Note: Identification vs categorization...

Categorization: a learning approach ϵ oppuseels

Training

L.Rosasco

Supervised learning

Given

$$
(x_1,y_1),\ldots,(x_n,y_n)
$$

find f such that

$$
\mathsf{sign} f(x_{\mathsf{new}}) = y_{\mathsf{new}}
$$

$$
\blacktriangleright \ x \in \mathbb{R}^D \text{ a vectorization of an image}
$$

 \blacktriangleright $y = \pm 1$ a label (mug/remote)

Learning and data representation

Consider

$$
f(x) = w^{\top} \Phi(x)
$$

a two steps learning scheme is often considered

- \blacktriangleright supervised learning of w
- **EXECUTE:** expert design or *unsupervised* learning of the **data representation** Φ

Data representation

 $\Phi: \mathbb{R}^D \to \mathbb{R}^p$

A mapping of data in a new format better suited for further processing

Data representation by design

Dictionaries of features

- \triangleright Wavelet & friends.
- \triangleright SIFT, HoG etc.

Kernels

- ► Classic off the shelf: Gaussian $K(x, x') = e^{-\left\|x x'\right\|^2 \gamma}$
- \triangleright Structured input: kernels on histograms, graphs etc.

In practice all is multi-layer! (an old slide)

Data representation schemes e.g. vision-speech, involve **multiple** (*layers*).

Pipeline

Raw data are often processed:

- \triangleright first computing some of low level features,
- \blacktriangleright then learning some **mid level** representation,
- ^I . . .
- \blacktriangleright finally using supervised learning.

These stages are often done separately:

- \triangleright good way to exploit unlabelled data...
- \triangleright but is it possible to design end-to-end learning systems?

In practice all is deep-learning! (updated slide)

Data representation schemes e.g. vision-speech, involve deep learning. Pipeline

- \triangleright Design some wild- but "differentiable" hierarchical architecture.
- ▶ Proceed with **end-to-end** learning!!

Architecture (rather than feature) engineering

Road Map

Part I: Basics neural networks

- \blacktriangleright Neural networks definition
- \triangleright Optimization +approximation and statistics

Part II: One step beyond

- Auto-encoders
- \triangleright Convolutional neural networks
- \blacktriangleright Tips and tricks

Part I: Basic Neural Networks

Shallow nets

$$
f(x) = w^{\top} \Phi(x), \quad \underbrace{x \mapsto \Phi(x)}_{\text{Fixed}}
$$

.

Examples

 \blacktriangleright Dictionaries

$$
\Phi(x) = \cos(B^\top x) = (\cos(\beta_1^\top x), \dots, \cos(\beta_p^\top x))
$$

with $B = \beta_1, \ldots, \beta_p$ fixed frequencies.

 \blacktriangleright Kernel methods

$$
\Phi(x) = (e^{-\|\beta_1 - x\|^2}, \dots, e^{-\|\beta_n - x\|^2})
$$

with $\beta_1 = x_1, \dots, \beta_n = x_n$ the input points.

L.Rosasco

Shallow nets (cont.)

$$
f(x) = w^{\top} \Phi(x), \quad \underbrace{x \mapsto \Phi(x)}_{\text{Fixed}}
$$

Empirical Risk Minimization (ERM)

$$
\min_{w} \sum_{i=1}^{n} (y_i - w^{\top} \Phi(x_i))^2
$$

Note:

The function f depends linearly on w , the ERM problem is **convex**!

Interlude: optimization by Gradient Descent (GD)

Batch gradient descent

$$
w_{t+1} = w_t - \gamma \nabla_w \widehat{\mathcal{E}}(w_t)
$$

where

$$
\widehat{\mathcal{E}}(w) = \sum_{i=1}^{n} (y_i - w^\top \Phi(x_i))^2
$$

so that

$$
\nabla_w \widehat{\mathcal{E}}(w) = -2 \sum_{i=1}^n \Phi(x_i)^\top (y_i - w^\top \Phi(x_i))
$$

- \triangleright Constant step-size depending on the *curvature* (Hessian norm)
- \blacktriangleright It is a descent method

Gradient descent illustrated

Stochastic gradient descent (SGD)

$$
w_{t+1} = w_t + 2\gamma_t \Phi(x_t)^\top (y_t - w_t^\top \Phi(x_t))
$$

Compare to

$$
w_{t+1} = w_t + 2\gamma \sum_{i=1}^n \Phi(x_i)^\top (y_i - w_t^\top \Phi(x_i))
$$

- ► Decaying step-size $\gamma = 1/\sqrt{t}$
- \blacktriangleright Lower iteration cost
- It is not a **descent** method $(SGD?)$
- ▶ Multiple passes (epochs) over data needed

SGD vs GD

Summary so far

Given data $(x_1, y_1), \ldots, (x_n, y_n)$ and a fixed representation Φ

 \blacktriangleright Consider

$$
f(x) = w^{\top} \Phi(x)
$$

 \blacktriangleright Find w by SGD

$$
w_{t+1} = w_t + 2\gamma_t \Phi(x_t)^\top (y_t - w^\top \Phi(x_t))
$$

Can we jointly learn Φ?

Neural Nets

Basic idea: compose simply parameterized representations

$$
\Phi = \Phi_L \circ \cdots \circ \Phi_2 \circ \Phi_1
$$

Let $d_0 = D$ and

$$
\Phi_{\ell}: \mathbb{R}^{d_{\ell-1}} \to \mathbb{R}^{d_{\ell}}, \quad \ell = 1, \ldots, L
$$

and in particular

$$
\Phi_{\ell} = \sigma \circ W_{\ell}, \quad \ell = 1, \ldots, L
$$

where

$$
W_{\ell}: \mathbb{R}^{d_{\ell-1}} \to \mathbb{R}^{d_{\ell}}, \quad \ell = 1, \ldots, L
$$

linear/affine and σ is a non linear map acting component-wise

$$
\sigma:\mathbb{R}\to\mathbb{R}.
$$

L.Rosasco

Deep neural nets

$$
f(x) = w^{\top} \Phi_L(x), \qquad \underbrace{\Phi_L = \overline{\Phi}_L \circ \cdots \circ \overline{\Phi}_1}_{\text{compositional representation}}
$$

$$
\overline{\Phi}_1 = \sigma \circ W_1 \qquad \qquad \overline{\Phi}_L = \sigma \circ W_L
$$

ERM

$$
\min_{w,(W_j)_j} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top \Phi_L(x_i))^2
$$

L.Rosasco

Neural networks jargoon

$$
\Phi_L(x) = \sigma(W_L \dots \sigma(W_2 \sigma(W_1 x)))
$$

- \triangleright Each intermediate representation corresponds to a (hidden) layer
- \blacktriangleright The dimensionalities $(d_\ell)_\ell$ correspond to the number of **hidden** units
- \blacktriangleright The non linearity σ is called **activation function**

Neural networks & neurons

- Each neuron compute an inner product based on a column of a weight matrix W
- **Figure 1** The non-linearity σ is the **neuron activation** function.

Deep neural networks

Activation functions

For $\alpha \in \mathbb{R}$ consider.

- ► sigmoid $s(\alpha) = 1/(1 + e^{-\alpha})t$,
- ► hyperbolic tangent $s(\alpha) = (e^{\alpha} e^{-\alpha})/(e^{\alpha} + e^{-\alpha})$,
- ReLU $s(\alpha) = |\alpha|_+$ (aka ramp, hinge),
- Softplus $s(\alpha) = \log(1 + e^{\alpha})$.

Some questions

$$
f_{w,(W_{\ell})_{\ell}}(x) = w^{\top} \Phi_{(W_{\ell})_{\ell}}(x), \qquad \Phi_{(W_{\ell})_{\ell}} = \sigma(W_L \dots \sigma(W_2 \sigma(W_1 x)))
$$

We have our model but:

- \triangleright Optimization: Can we train efficiently?
- \blacktriangleright Approximation: Are we dealing with rich models?
- \triangleright Statistics: How hard is it generalize from finite data?

Neural networks function spaces

Consider the non linear space of functions of the form $f_{w,(W_{\ell})_{\ell}}:\mathbb{R}^D\to\mathbb{R},$ $f_{w,(W_\ell)_\ell}(x) = w^\top \Phi_{(W_\ell)_\ell}(x), \qquad \Phi_{(W_\ell)_\ell} = \sigma(W_L \dots \sigma(W_2 \sigma(W_1 x)))$ where $w,(W_{\ell})_{\ell}$ may vary.

Very little structure. . . but we can :

- \triangleright train by gradient descent (next)
- \triangleright get (some) approximation/statistical guarantees (later)

One layer neural networks

Consider only one hidden layer:

$$
f_{w,W}(x) = w^\top \sigma(Wx) = \sum_{j=1}^u w_j \sigma\left(x^\top W^j\right)
$$

and ERM again

$$
\sum_{i=1}^{n} (y_i - f_{w,W}(x_i))^2,
$$

Computations

Consider

$$
\min_{w,W} \widehat{\mathcal{E}}(w, W), \qquad \widehat{\mathcal{E}}(w, W) = \sum_{i=1}^n (y_i - f_{(w,W)}(x_i)))^2.
$$

Problem is non-convex! (possibly smooth depending on σ)

L.Rosasco

Back-propagation & GD

Empirical risk minimization,

$$
\min_{w,W} \widehat{\mathcal{E}}(w, W), \qquad \widehat{\mathcal{E}}(w, W) = \sum_{i=1}^n (y_i - f_{(w,W)}(x_i)))^2.
$$

An approximate minimizer is computed via the following gradient method

$$
\begin{array}{rcl} w_j^{t+1} & = & w_j^t - \gamma_t \frac{\partial \widehat{\mathcal{E}}}{\partial w_j}(w^t, W^t) \\ W_{j,k}^{t+1} & = & W_{j,k}^t - \gamma_t \frac{\partial \widehat{\mathcal{E}}}{\partial W_{j,k}}(w^{t+1}, W^t) \end{array}
$$

where the step-size $(\gamma_t)_t$ is often called learning rate.

Back-propagation & chain rule

Direct computations show that:

$$
\frac{\partial \widehat{\mathcal{E}}}{\partial w_j}(w, W) = -2 \sum_{i=1}^n \underbrace{(y_i - f_{(w, W)}(x_i))}_{\Delta_{j,i}} h_{j,i}
$$
\n
$$
\frac{\partial \widehat{\mathcal{E}}}{\partial W_{j,k}}(w, W) = -2 \sum_{i=1}^n \underbrace{(y_i - f_{(w, W)}(x_i))}_{\eta_{i,k}} w_j \sigma'(w_j^\top x) x_i^k
$$

Back-prop equations: $\eta_{i,k} = \Delta_{j,i} c_j \sigma'(w_j^\top x)$

Using above equations, the updates are performed in two steps:

- \triangleright Forward pass compute function values keeping weights fixed,
- \triangleright Backward pass compute errors and propagate
- \blacktriangleright Hence the weights are updated.

SGD is typically preferred

$$
w_j^{t+1} = w_j^t - \gamma_t 2(y_t - f_{(w_t, W_t)}(x_t))) h_{j,t}
$$

\n
$$
W_{j,k}^{t+1} = W_{j,k}^t - \gamma_t 2(y_t - f_{(w_{t+1}, W_t)}(x_t))) w_j \sigma'(w_j^\top x) x_t^k
$$

Non convexity and SGD

Few remarks

- \triangleright Optimization by gradient methods– typically SGD
- \triangleright Online update rules are potentially biologically plausible– **Hebbian** learning rules describing neuron plasticity
- \triangleright Multiple layers can be analogously considered
- \triangleright Multiple step-size per layers can be considered
- \blacktriangleright Initialization is tricky- more later
- \triangleright NO convergence guarantees
- \blacktriangleright More tricks later

Some questions

- \triangleright What is the benefit of multiple layers?
- \triangleright Why does stochastic gradient seem to work?

Wrapping up part I

- \blacktriangleright Learning classifier and representation
- \blacktriangleright From shallow to deep learning
- \triangleright SGD and backpropagation

- \blacktriangleright Autoencoders and unsupervised data?
- \blacktriangleright Convolutional neural networks
- \blacktriangleright Tricks and tips

Part II:

Unsupervised learning with neural networks

- \blacktriangleright Because unlabeled data abound
- \triangleright Because one could use obtained weight for initialize supervised learning (pre-training)

Auto-encoders

- \triangleright A neural network with one input layer, one output layer and one (or more) hidden layers connecting them.
- \blacktriangleright The output layer has equally many nodes as the input layer,
- It is trained to **predict the input** rather than some target output.

Auto-encoders (cont.)

An auto encoder with one hidden layer of k units, can be seen as a representation-reconstruction pair:

$$
\Phi: \mathbb{R}^D \to \mathcal{F}_k, \quad \Phi(x) = \sigma(Wx), \quad \forall x \in \mathbb{R}^D
$$

with $\mathcal{F}_k = \mathbb{R}^k$, $k < d$ and

 $\Psi : \mathcal{F}_k \to \mathbb{R}^D$, $\Psi(\beta) = \sigma(W'\beta)$, $\forall \beta \in \mathcal{F}_k$.

Auto-encoders & dictionary learning

$$
\Phi(x) = \sigma(Wx), \qquad \Psi(\beta) = \sigma(W'\beta)
$$

- \triangleright Reconstructive approaches have connections with so called energy models [LeCun et al....]
- \triangleright Possible **probabilistic/Bayesian** interpretations/variations (e.g. Boltzmann machine [Hinton et al...])
- \blacktriangleright The above formulation is closely related to dictionary learning.
- \blacktriangleright The weights can be seen as dictionary atoms.

Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al '06]...

$$
(\Phi_1 \circ \Psi_1) \circ (\Phi_2 \circ \Psi_2) \cdots \circ (\Phi_\ell \circ \Psi_\ell)
$$

Autoencoder

... with the potential of obtaining richer representations.

Are auto-encoders useful?

 \triangleright Pre-training has not delivered as hoped: supervised training on big data-sets is best...

 \triangleright Still a lot of work on the topic: variational autoencoders, denoising autoencoderes, sparse autoencoders...

Beyond reconstruction

In many applications the **connectivity** of neural networks is limited in a specific way.

- \triangleright Weights in the first few layers have smaller support and are repeated- weight sha ring.
- \triangleright Subsampling (*pooling*) is interleaved with standard neural nets computations.

The obtained architectures are called **convolutional neural networks**

Convolutional layers

Consider the composite representation

$$
\Phi: \mathbb{R}^D \to \mathcal{F}, \quad \Phi = \sigma \circ W,
$$

with

- representation by filtering $W : \mathbb{R}^D \to \mathcal{F}'$,
- representation by **pooling** $\sigma : \mathcal{F}' \to \mathcal{F}$.

Note: σ , *W* are more complex than in standard NN.

Convolution and filtering

The matrix W is made of blocks

$$
W=(G_{t_1},\ldots,G_{t_T})
$$

each block is a convolution matrix obtained transforming a vector (template) t , e.g.

$$
G_t = (g_1t, \ldots, g_Nt).
$$

e.g.

$$
G_t = \begin{bmatrix} t^1 & t_2 & t_3 & \dots & t^d \\ t^d & t^1 & t_2 & \dots & t^{d-1} \\ t^{d-1} & t^d & t^1 & \dots & t^{d-2} \\ \dots & \dots & \dots & \dots & \dots \\ t^2 & t^3 & t^4 & \dots & t^1 \end{bmatrix}
$$

For all $x \in \mathbb{R}^D$,

$$
W(x)(j,i) = x^{\top} g_i t_j
$$

Convolution and filtering

The matrix W is made of blocks

$$
W = (G_{t_1}, \ldots, G_{t_T})
$$

then

$$
Wx = (t_1 \star x), \ldots, (t_T \star x)
$$

Note: Compare to standard neural nets where

$$
Wx = t_1^\top x, \dots, t_T^\top x
$$

L.Rosasco

Pooling

The pooling map aggregates (pools) the values corresponding to the same transformed template

$$
x \star t = x^{\top} g_1 t, \dots, x^{\top} g_N t,
$$

and can be seen as a form of subsampling.

Pooling functions

Given a template t , let

$$
\beta = \sigma(x \star t) = (\sigma(x^{\top} g_1 t), \ldots, \sigma(x^{\top} g_N t)).
$$

for some non-linearity σ , e.g. $\sigma(\cdot) = |\cdot|_+$.

Examples of pooling

 \blacktriangleright max pooling

$$
\max_{j=1,\ldots,N} \beta^j,
$$

 \blacktriangleright average pooling

$$
\frac{1}{N}\sum_{j=1}^N \beta^j,
$$

 $\blacktriangleright \ell_p$ pooling

$$
\left\Vert \beta\right\Vert _{p}=\left(\sum_{j=1}^{N}|\beta^{j}|^{p}\right)^{\frac{1}{p}}.
$$

Why pooling?

The intuition is that pooling can provide some form of robustness and even invariance to the transformations.

Invariance & selectivity

- \triangleright A good representation should be invariant to semantically irrelevant transformations.
- \triangleright Yet, it should be discriminative with respect to relevant information (selective).

Basic computations: simple & complex cells

(Hubel, Wiesel '62)

 \blacktriangleright Simple cells

$$
x \mapsto x^\top g_1 t, \dots, x^\top g_N t
$$

 \blacktriangleright Complex cells

$$
x^{\top} g_1 t \ldots, x^{\top} g_N t \mapsto \sum_g |x^{\top} g t|_+
$$

Basic computations: convolutional networks

(Le Cun '88)

 \blacktriangleright Convolutional filters

$$
x \mapsto x^\top g_1 t, \dots, x^\top g_N t
$$

 \blacktriangleright Subsampling/pooling

$$
x^{\top}g_1t \ldots, x^{\top}g_Nt \mapsto \sum_{g}|x^{\top}gt|_+
$$

L.Rosasco

Deep convolutional networks

In practice:

- The role of layer 1 is to decorrelate variables and accentuate the differences (or \blacktriangleright multiple convolution layers are stacked,
- non-linearity of layers 3 can always operate at its sweet spot. Decorrelation (and mean \blacktriangleright pooling is not global, but over a subset of transformations $(receptive\ field)$, and the previous stage. Its role previous stage. Its role previous stage. Its role previous stage. It is related by α
- is to non-linearly embed the input into a higher-dimensional space, so that inputs that \blacktriangleright the receptive fields size increases in higher layers.

A biological motivation

Visual cortex

The processing in DCN has analogies with computational neuroscience models of the information processing in the visual cortex see [Poggio et al. . . .].

Which activation function?

- \blacktriangleright Biological motivation
- \blacktriangleright Rich function spaces
- \blacktriangleright Avoid vanishing gradient
- \blacktriangleright Fast gradient computation

ReLU: It has the last two properties! It seems to work best in practice!

SGD is slow...

Accelerations

\blacktriangleright Momentum

- \blacktriangleright Nesterov's method
- \blacktriangleright Adam
- \blacktriangleright Adagrad

Mini-Batch SGD

- \triangleright SGD: use one point each iteration to compute gradient
- \triangleright Mini-Batch: use a *mini-batch* of points each iteration to compute gradient

Why? Faster convergence/More stable behavior

Initialization: learning from scratch

 \blacktriangleright Learning layers from scratch/from pre-learned initialization

 \blacktriangleright Learning layers more/less aggressively using different step-sizes

L.Rosasco

Training protocol(s)

\blacktriangleright Learning at different layers

- Initialization
- Learning rates

\blacktriangleright Mini-batch size

- \blacktriangleright Further aspect: regularization!
	- Weight constraints
	- Drop-out

\blacktriangleright Batch normalization

\blacktriangleright ...

Wrapping up

- \blacktriangleright Unlabelled data and auto-encoders
- \triangleright CNN: the power of weight sharing for learning
- \blacktriangleright Tips and tricks (fine tune!)

Final remarks

- \blacktriangleright Learning representations with deep-nets
- \blacktriangleright Learning deep-nets with back-prop
- \triangleright CNN: the power of weight sharing for learning
- ▶ More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

But why do they work?! Gotta be that they are like the brain...