MLCC 2018
Deep Learning

Lorenzo Rosasco
UNIGE-MIT-IIT

What? Classification

Object classification

What's in this image?

Note: beyond vision: classify graphs, strings, networks, time-series. ..

L.Rosasco

What makes the problem hard?

» Viewpoint

Note: ldentification vs categorization. . .

L.Rosasco

Categorization: a learning approach

Training

mug

remote remote remote

Test

L.Rosasco

Supervised learning

Given
(33172/1), ey (xnayn)

find f such that

Signf($new) = Ynew

» 2 € RP a vectorization of an image

» y = =1 a label (mug/remote)

L.Rosasco

Learning and data representation

Consider
flx) =w'®(x)

a two steps learning scheme is often considered

» supervised learning of w

> expert design or unsupervised learning of the data representation ®

L.Rosasco

Data representation

& :RP 5 RP

A mapping of data in a new format better suited for further processing

L.Rosasco

Data representation by design

Dictionaries of features
» Wavelet & friends.
» SIFT, HoG etc.

Kernels
;112
» Classic off the shelf: Gaussian K(z,2') = e~ lle=='I"

» Structured input: kernels on histograms, graphs etc.

L.Rosasco

In practice all is multi-layer!
(an old slide)

Data representation schemes e.g. vision-speech, involve multiple (/ayers).

Pipeline

Raw data are often processed:
» first computing some of low level features,
» then learning some mid level representation,
> ...

> finally using supervised learning.

These stages are often done separately:
» good way to exploit unlabelled data. ..

> but is it possible to design end-to-end learning systems?

L.Rosasco

In practice all is deep-learning!
(updated slide)

Data representation schemes e.g. vision-speech, involve deep learning.
Pipeline

> Design some wild- but “differentiable” hierarchical architecture.
> Proceed with end-to-end learning!!

i

Max 128 Max paoling
pooling pooling

2048 2048

Architecture (rather than feature) engineering

L.Rosasco

Road Map

Part |: Basics neural networks
» Neural networks definition

» Optimization +approximation and statistics

Part II: One step beyond
» Auto-encoders
» Convolutional neural networks

» Tips and tricks

L.Rosasco

Part |: Basic Neural Networks
‘ T

ooooooooo

Shallow nets

f(x)=w'®(x), z~— ()
Fixed

Examples
» Dictionaries
®(z) = cos(B z) = (cos(B] x),... ,cos(ﬂ;x))

with B = 1, ..., B, fixed frequencies.

» Kernel methods
B(z) = (e 1P—2l® e~lIBnal?)

with 81 = x1, ..., 8, = =, the input points.

L.Rosasco

Shallow nets (cont.)

Empirical Risk Minimization (ERM)

n

min Y (yi —w' ®(z;))?
w
=1

Note:
The function f depends linearly on w, the ERM problem is convex!

e
"

XK

o:“:‘:‘:‘:‘:‘:‘o

RN

SR

:\“\\‘»‘\:":0:&‘0%‘4 XU

o

0

ot
m

& il

SRR
R

R %
R

L.Rosasco

Interlude: optimization by Gradient Descent (GD)

Batch gradient descent

~

wt+1 = Wt — ’vaé’(wt)

where

so that .
VE(w) = =23 ®(x;) " (y; — w' &(x;))
i=1

» Constant step-size depending on the curvature (Hessian norm)

» It is a descent method

L.Rosasco

Gradient descent illustrated

J(w) Initial ! Gradient
weight ,"/
I

Global cost minimum
JminlW)

-
>

L.Rosasco

Stochastic gradient descent (SGD)

Wi = wi + 27 P(we) " (y — w D))

Compare to

n

wep1 = we + 27> B(x:) (i — w] (1))

i=1

» Decaying step-size v = 1/+/t

> Lower iteration cost

> It is not a descent method (SGD?)

» Multiple passes (epochs) over data needed

L.Rosasco

SGD vs GD

gradient descent

ITERATIONS

L.Rosasco

Summary so far

Given data (z1,91),- .., (%n,yn) and a fixed representation ®

» Consider
flz) =w' ®(z)

» Find w by SGD

wipr = wp+ 2% () " (e — w' B(xy))

Can we jointly learn ®7?

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

d=Pr0---0Pyo0d

Let dy = D and
Py :R¥- 5 RE (=1,...,L

and in particular
(I)g:O'OWg, EZL...,L

where
Wp:RY-1 s R* ¢=1,...,L

linear/affine and & is a non linear map acting component-wise

c:R—R.

L.Rosasco

Deep neural nets

flz)=w®p(x), O, =P 00Dy
compositional representation
61:001/1/1 6[,:00”/[/
ERM
min_ Z(yz —w' ®p(z;))?
“)1(W7>.7 n i=1

L.Rosasco

Neural networks jargoon

bp(z) =W ...0(Waa(Wyix)))

» Each intermediate representation corresponds to a (hidden) layer

» The dimensionalities (dy), correspond to the number of hidden
units
» The non linearity o is called activation function

L.Rosasco

Neural networks & neurons

o

® 6
AL, TAM ANEURON

» Each neuron compute an inner product based on a column of a
weight matrix W

» The non-linearity o is the neuron activation function.

L.Rosasco

Deep neural networks

L.Rosasco

Activation functions

For o € R consider,
> sigmoid s(a) = 1/(1 + e)¢,
> hyperbolic tangent s(a) = (e* —e™®)/(e® + e~ %),
» ReLU s(a) = |a|+ (aka ramp, hinge),
> Softplus s(a) = log(1 + e®).

5_.
= sigmoid
=——=thanh
4_
——RelLU
=——=softplus
gl T—sofpus| S
2,
1,
0 ;/ 77777 ﬁ
5 0 5

L.Rosasco

Some questions

Foowe, (@) =w @y, (), Qwy, =o(Wr...0(Wao(Wix)))

We have our model but:
» Optimization: Can we train efficiently?
» Approximation: Are we dealing with rich models?

» Statistics: How hard is it generalize from finite data?

L.Rosasco

Neural networks function spaces

Consider the non linear space of functions of the form
fw,(We)z : RD — R,

Foowe, (@) =w @y, (), Py, =o(Wr...0(Wao(Wix)))

where w, (Wy), may vary.

Very little structure. .. but we can :
> train by gradient descent (next)
> get (some) approximation/statistical guarantees (later)

L.Rosasco

One layer neural networks

Consider only one hidden layer:

fow(@) =w’ ij TW]

and ERM again

L.Rosasco

Computations

Consider

Problem is non-convex! (possibly smooth depending on o)

A A0 N il
W Wi W
N QIR0 (A
N SO

A‘\‘\“S\\‘S\Q‘\‘m\\‘“\ ol ":‘:“\‘R

L.Rosasco

Back-propagation & GD

Empirical risk minimization,

An approximate minimizer is computed via the following gradient
method

o€
w;’-H = wi— QL ‘(wt, W)
j
o€
Wittt wt 1t
J.k - gk TVt 8”9‘,1@ (w))

where the step-size (7y;); is often called learning rate.

L.Rosasco

Back-propagation & chain rule

Direct computations show that:

o -
S (W W) = =23 (i = faw) (@) b
J i=1
Aji
85 W — 2 - P T k
oW, (W, W) = =23 (4 — faww)(@:)w;o’ (w] z) z}

i=1
MNi,k

e _ 1o T
Back-prop equations: 7, = Ajicio’(w) x)
Using above equations, the updates are performed in two steps:
» Forward pass compute function values keeping weights fixed,
» Backward pass compute errors and propagate

» Hence the weights are updated.

L.Rosasco

W't

t41
Wj,k

SGD is typically preferred

wh =Y 2(yr = fwe,wi) (@)
W;,k —7e2(yr — f(wt+1,Wt)($t)))ij/(

T
wjx

LA

L.Rosasco

Non convexity and SGD

Starting pt.

Local minima

Global minima

L.Rosasco

Few remarks

» Optimization by gradient methods- typically SGD

» Online update rules are potentially biologically plausible- Hebbian

vV v.v. vy

learning rules describing neuron plasticity
Multiple layers can be analogously considered
Multiple step-size per layers can be considered
Initialization is tricky- more later

NO convergence guarantees

More tricks later

L.Rosasco

Some questions

» What is the benefit of multiple layers?

» Why does stochastic gradient seem to work?

L.Rosasco

Wrapping up part |

» Learning classifier and representation
» From shallow to deep learning

» SGD and backpropagation

L.Rosasco

Coming up

» Autoencoders and unsupervised data?
» Convolutional neural networks

» Tricks and tips

L.Rosasco

Part |l

ONE STEP BEYOND...

L.Rosasco

Unsupervised learning with neural networks

» Because unlabeled data abound

» Because one could use obtained weight for initialize supervised
learning (pre-training)

L.Rosasco

Auto-encoders

z Q O O O O

W /
> A neural network with one input layer, one output layer and one
(or more) hidden layers connecting them.

Q

T

O O Q

» The output layer has equally many nodes as the input layer,
> It is trained to predict the input rather than some target output.

L.Rosasco

Auto-encoders (cont.)

An auto encoder with one hidden layer of k units, can be seen as a
representation-reconstruction pair:

®:RP - F, ®(x)=0(Wz), VoecRP
with F, = R*, k < d and

U:F,—»RP, W(E)=c (W), VjBE F.

L.Rosasco

Auto-encoders & dictionary learning

O(z) =0 (Wz), ¥(B)=0(W'P)

Reconstructive approaches have connections with so called energy
models [LeCun et al....]

Possible probabilistic/Bayesian interpretations/variations (e.g.
Boltzmann machine [Hinton et al....])

The above formulation is closely related to dictionary learning.

» The weights can be seen as dictionary atoms.

L.Rosasco

Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al '06]. ..

(P10T;1)o(PyoWy) -0 (PgoWy)
——

Autoencoder

... with the potential of obtaining richer representations.

L.Rosasco

Are auto-encoders useful?

> Pre-training has not delivered as hoped: supervised training on big
data-sets is best...

» Still a lot of work on the topic: variational autoencoders, denoising
autoencoderes, sparse autoencoders...

L.Rosasco

Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8XE 8@dxd 20@1x1

o N r==

Pr—

Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

» Weights in the first few layers have smaller support and are
repeated- weight sha ring.

» Subsampling (pooling) is interleaved with standard neural nets
computations.

The obtained architectures are called convolutional neural networks...s.

Convolutional layers

Consider the composite representation

®:RP - F, ®=00W,
with
> representation by filtering W : RP — 7/,
> representation by pooling o : 7/ — F.

Note: o, W are more complex than in standard NN.

L.Rosasco

Convolution and filtering

The matrix W is made of blocks
W - (th, . '7GtT)

each block is a convolution matrix obtained transforming a vector
(template) ¢, e.g.

Gt = (gltaagNt)

e.g.

For all z € RP,

L.Rosasco

Convolution and filtering

The matrix W is made of blocks
W == (th, .. ’7GtT)

then
Wz =(t; xx),...,(tr xx)

Note: Compare to standard neural nets where

T T
We=tiz,...,trx

L.Rosasco

Pooling

The pooling map aggregates (pools) the values corresponding to the
same transformed template

rxt = nglt, .. .,:UTgNt,

and can be seen as a form of subsampling.

L.Rosasco

Pooling functions

Given a template ¢, let
B=o(xxt)=(o(z'git),...,o(x" gnt)).
for some non-linearity o, e.g. o(-) = |+.
Examples of pooling
» max pooling

J
max (7,
j=1,..,N

> average pooling
1 e
N2
j=1

> (, pooling

=

N .
181, = | > 187
j=1

L.Rosasco

Why pooling?

The intuition is that pooling can provide some form of robustness and
even invariance to the transformations.

Invariance & selectivity

» A good representation should be invariant to semantically
irrelevant transformations.

> Yet, it should be discriminative with respect to relevant
information (selective).

L.Rosasco

Basic computations: simple & complex cells

(Hubel, Wiesel '62)

» Simple cells
T — nglt, .. ,ngNt

» Complex cells

zlgit... x gyt — Z lz " gt
g

L.Rosasco

Basic computations: convolutional networks

(Le Cun '88)

» Convolutional filters
T — :L'Tglt, e ,ngNt

» Subsampling/pooling

e git...,x gyt — Z 2" gt
g

L.Rosasco

Deep convolutional networks

Filtering

l

Pooling

|

Filtering Pooling \“* t
) Output
Input First Second Classifier
Layer Layer

In practice:
» multiple convolution layers are stacked,

» pooling is not global, but over a subset of transformations
(receptive field),

> the receptive fields size increases in higher layers.

L.Rosasco

A biological motivation

Visual cortex

The processing in DCN has
analogies with computational
neuroscience models of the
information processing in the

visual cortex see [Poggio et al.

1.

Classification
units

V4/PIT

V1/V2

L.Rosasco

Which activation function?

= sigmoid
——thanh

4

——RelU

—softplus

» Biological motivation

» Rich function spaces

» Avoid vanishing gradient
» Fast gradient computation

RelLU: It has the last two properties! It seems to work best in practice!

L.Rosasco

SGD is slow...

ITERATIONS

Accelerations
» Momentum
» Nesterov's method
» Adam
» Adagrad
>

L.Rosasco

Mini-Batch SGD

gradient descent

ITERATIONS

> GD: use all points each iteration to compute gradient
» SGD: use one point each iteration to compute gradient
» Mini-Batch: use a mini-batch of points each iteration to compute
gradient
Why? Faster convergence/More stable behavior | Rossseo

Initialization: learning from scratch

Large-scale Datasets General Purpose GPUs

IMAGENE

-y

AlexNet F- e\)
Krizhevsky S “%
et al (2012) R

L.Rosasco

Initialization & fine tuning

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

y, dog (0.01)
cat (0.04)
true boat (0.94)
08(0) bird (0.02)
at (0) L
oat(1)

ird (0)

L.Rosasco

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

ytrue -~ - ug (0.05)
mug (0) L hone (0.95)
%hune (1)] __D
fc, fc, fcN
6 —7 — B CNN(X) = V,req

FORWARD

BACKWARD M E(YyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

L.Rosasco

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

log (0.01)
Ytrue = m g 0.05)
i (0.94) hone (0.95)
[mug (0) DN0.02)
%ﬂhune) A] A
conv. fc, fcN,fcN
2 6 7 8 -
> CNN(X) = Ve

FORWARD

BACKWARD N EYyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfcN7 dfcN8

L.Rosasco

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

log (0.01)
Ytrue = m g 0.05)
i (0.94) hone (0.95)
[mug (0) DN0.02)
%ﬂhune) A] A
conv. fcNfcN,fcN
2 6 7 8 -
> CNN(X) = Ve

FORWARD

BACKWARD N EYyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfcN6 dfcN7 dfeN8

L.Rosasco

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

0g (0.01)
Yirue = m ug (0.05)
i (0.94) hone (0.95)
[mug (0) DN0.02)
%ﬂhune[l) t1---0 A
conv, fc, fc, fcNg
> CNN(X) = g
FORWARD)
BACKWARD min EVyruerYorea)
< l l l l l arg min E(w;, w,,...)
dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

L.Rosasco

Initialization & fine tuning

Fully Fully Output Predictions

Pooling Convolution Pooling
Connected Connected

Convolution

o8 (0.01)

ytrue __'___'__ - uilo 05)
i ' one
%;g (0) L hll ou)z) (0.95)
hone (1)] D 7
conv conv. fc, fc, fcN
1 2 6 %7 [_
X > CNN(X) = Y
FORWARD
mMin E(YyyerYored)
BACKWARD true’ ¥ pred
< l l l l l arg min E(w, w,,...)
dE dE dE dE dE
dconv1 dconv2 dfc6 dfc7 dfcN8

» Learning layers from scratch/from pre-learned initialization

» Learning layers more/less aggressively using different step-sizes
L.Rosasco

v

v

v

v

Training protocol(s)

Learning at different layers
— Initialization
— Learning rates

Mini-batch size

Further aspect: regularization!

— Weight constraints
— Drop-out

Batch normalization

L.Rosasco

Wrapping up

» Unlabelled data and auto-encoders
» CNN: the power of weight sharing for learning
» Tips and tricks (fine tune!)

L.Rosasco

Final remarks

Learning representations with deep-nets

Learning deep-nets with back-prop

CNN: the power of weight sharing for learning

More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

But why do they work?! Gotta be that they are like the brain...

L.Rosasco

	Some Tricks of the Trade

