MLCC 2018 - Clustering

Lorenzo Rosasco UNIGE-MIT-IIT

About this class

We will consider an *unsupervised setting*, and in particular the problem of clustering unlabeled data into "coherent" groups.

MLCC 2018

supervised learning

- "Learning with a teacher"
- ▶ Data set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- $\hat{X} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times d} \text{ and } \hat{y} = (y_1, \dots, y_n)^{\top}.$

MLCC 2018

supervised learning

- "Learning with a teacher"
- ▶ Data set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- $\hat{X} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times d} \text{ and } \hat{y} = (y_1, \dots, y_n)^{\top}.$

Unsupervised learning

- ► "Learning without a teacher"
- ▶ Data set $S = \{x_1, \ldots, x_n\}$ with $x_i \in \mathbb{R}^d$

Unsupervised learning

- ► "Learning without a teacher"
- ▶ Data set $S = \{x_1, \ldots, x_n\}$ with $x_i \in \mathbb{R}^d$

Unsupervised learning problems

- ► Dimensionality reduction
- Clustering
- ▶ Density estimation
- ► Learning association rules
- ▶ Learning adaptive data representations

...

MLCC 2018

Supervised vs unsupervised methods

- In supervised learning we have a measure of success based on a loss function and on a model selection procedure e.g., cross validation
- ▶ In unsupervised learning we don't!
 - hence many heuristics and the proliferation of many algorithms difficult to evaluate — lack of theoretical grounds

Clustering

Clustering is a widely used technique for data analysis, with applications ranging from statistics, computer science, biology, social sciences....

► Goal:

Grouping/segmenting a collection of objects into subsets or clusters. (Possibly also) arrange clusters into a natural hierarchy

MLCC 2018

Clustering examples

Clustering algorithms

- lacktriangle Combinatorial algorithms directly from data $\{x_i\}_{i=1}^n$ + some notion of *similarity* or *dissimilarity*
- ► Mixture models based on some assumption on the underlying probability distribution

MLCC 2018

11

Combinatorial clustering

▶ We assume some knowledge on the number of clusters $K \leq n$. Goal: associate a cluster label $k = \{1, \ldots, K\}$ with each datum, by defining an encoder $\mathcal C$ s.t.

$$k = \mathcal{C}(x_i)$$

ightharpoonup We look for an encoder \mathcal{C}^* that achieves the goal of clustering data, according to some specific requirement of the algorithm and based on data pairs dissimilarities

12

Combinatorial clustering

- Criterion: assign to the same cluster similar/close data
- ▶ We may start from the following "loss" or energy function (within class):

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} d(x_i, x_{i'})$$

- $\mathcal{C}^* = \arg\min W(\mathcal{C})$
- Unfeasible in practice!

$$S(N,K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} {K \choose k} k^{n}$$

and notice that $S(10,4) \sim 34 K$ while $S(19,4) \sim 10^{10}$

K-means algorithm

It refers specifically to the Euclidean distance.

- ▶ initialize cluster centroids m_k k = 1, ..., K at random
- repeat until convergence
 - 1. assign data to centroids $C(x_i) = \arg\min_{1 \le k \le K} ||x_i m_k||^2$
 - 2. update centroids

K-means functional

K-means corresponds to minimizing the following function

$$J(C, m) = \sum_{k=1}^{K} \sum_{C(i)=k} ||x_i - m_k||^2$$

The algorithm is an alternating optimization procedure, with convergence guarantees in practice (no rates).

The function J is not convex, thus K-means is not guaranteed to find a global minimum.

Computational cost

- 1. data assignment O(Kn)
- 2. cluster centers updates O(n)

K-means

Figure from Hastie, Tibshirani, Friedman

Example Vector Quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 – 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Spectral clustering - similarity graph

- A set of unlabeled data $\{x_i\}_{i=1}^n$ and some notion of similarity between data pairs s_{ij}
 - lacktriangle We may represent them as a similarity graph G=(V,E)

Clustering can be seen as a graph partitioning problem

Spectral clustering - graph notation

G = (V, E) undirected graph

- V : data correspond to the vertices
- ▶ E: Weighted adjacency matrix $W = (w_{ij})_{i,j=1}^n$ with $w_{ij} \ge 0$. W is symmetric $w_{ij} = w_{ji}$, as G is undirected.
- ▶ Degree of a vertex: $d_i = \sum_{j=1}^n w_{ij}$ Degree matrix: $D = diag(d_i)$
- ► Sub-graphs:

$$A,B\subset V$$
 then $W(A,B)=\sum_{i\in A,j\in B}w_{ij}$ Subgraph size:

- |A| number of vertices
- $-\operatorname{vol}(A) = \sum_{i \in A} d_i$

Spectral clustering - how to build the graph

We use the available pairwise similarities s_{ij}

- ightharpoonup ϵ -neighbourhood graph: connect vertices whose similarity is larger than ϵ
- \blacktriangleright KNN graph: connect vertex v_i to its K neighbours. Not symmetric!
- fully connected graph: $s_{ij}=\exp(-d_{ij}^2/2\sigma^2)$ d is the Euclidean distance, $\sigma\geq 0$ controls the width of a neighborhood

Spectral clustering - how to build the graph

- ightharpoonup n can be very large, it would be preferable if W was sparse
- ▶ In general it is better some notion of locality

$$w_{ij} = \left\{ \begin{array}{ll} s_{ij} & \text{if} \;\; j \;\; \text{is a KNN of} \;\; i \\ 0 & \text{otherwise} \end{array} \right.$$

Unnormalized graph Laplacian: L = D - WProperties:

▶ For all $f \in \mathbb{R}^n$

$$f^{\top}Lf = \frac{1}{2} \sum_{ij=1}^{n} w_{ij} (f_i - f_j)^2$$

$$f^{\top}Lf = f^{\top}Df - f^{\top}Wf$$

$$= \sum_{i} d_{i}f_{i}^{2} - \sum_{i,j} f_{i}f_{j}w_{ij}$$

$$= \frac{1}{2} \left(\sum_{i} (\sum_{j} w_{ij})f_{i}^{2} - 2\sum_{ij} f_{i}f_{j}w_{ij} + \sum_{j} (\sum_{i} w_{ij})f_{j}^{2} \right) =$$

$$= \frac{1}{2} \sum_{i} w_{ij}(f_{i} - f_{j})^{2}$$

Unnormalized graph Laplacian: L = D - W

▶ For each vector $f \in \mathbb{R}^n$

$$f^{\top}Lf = \frac{1}{2} \sum_{ij=1}^{n} w_{ij} (f_i - f_j)^2$$

The graph Laplacian measures the variation of f on the graph $(f^{\top}Lf$ small if close points have close function values f_i)

- ▶ *L* is symmetric and positive semi-definite
- ► The smallest eigenvalue of *L* is 0 and its corresponding eigenvector is a vector of ones
- ▶ L has N non negative real-valued eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$

Unnormalized graph Laplacian: L = D - W

▶ For each vector $f \in \mathbb{R}^n$

$$f^{\top}Lf = \frac{1}{2} \sum_{ij=1}^{n} w_{ij} (f_i - f_j)^2$$

The graph Laplacian measures the variation of f on the graph $(f^{\top}Lf \text{ small if close points have close function values } f_i)$

- ▶ L is symmetric and positive semi-definite
- ➤ The smallest eigenvalue of L is 0 and its corresponding eigenvector is a vector of ones
- ▶ L has N non negative real-valued eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$

Laplacian and clustering: the multiplicity k of $\lambda_0 = 0$ equals the number of connected components in the graph

Unnormalized graph Laplacian:

$$L = D - W$$

Normalized graph Laplacians:

$$L_{n1} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$
$$L_{n2} = D^{-1}L = I - D^{-1}W$$

A spectral clustering algorithm

- ► Graph Laplacian
 - compute the Unnormalized Graph Laplacian L (unnormalized algorithm)
 - compute a Normalized Graph Laplacian L_{n1} or L_{n2} (normalized algorithm)
- compute the first k eigenvectors of the Laplacian (k number of clusters to compute)
- ▶ let $U_k \in \mathbb{R}^{n \times k}$ be the matrix containing the k eigenvectors as columns
- ▶ $y_j \in \mathbb{R}^k$ be the vector obtained by the j-th row of U_k $j=1\dots n$. Apply k-means to $\{y_j\}$

A spectral clustering algorithm

Computational cost

- Eigendecomposition $O(n^3)$
- lacktriangle It may be enough to compute the first k eigenvalues/eigenvectors. There are algorithms for this

Example

Figure from Hastie, Tibshirani, Friedman 28

The number of clusters

eigengap heuristic

Figure from Von Luxburg tutorial

Semi-supervised learning

Laplacian-based regularization algorithms (Belkin et al. 04) Set of labeled examples: $\{(x_i,y_i)\}_{i=1}^n$ Set of unlabeled examples: $\{(x_j)\}_{j=n+1}^n$

$$f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda_A ||f||^2 + \frac{\lambda_I}{u^2} f^T L f$$

Wrapping up

In this class we introduced the concept of data clustering and sketched some of the best known algorithms

Ulrike Von Luxburg - A tutorial on Spectral Clustering