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About this class

We will consider an unsupervised setting, and in particular the problem of
clustering unlabeled data into “coherent” groups.
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supervised learning

» "Learning with a teacher”
» Data set S = {(21,41),---, (Tn,yn)} with z; € R? and y; € R
> X = (xla"'vmn)T €Rn><d and Z:I: (yla"'vyn)—r'
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Unsupervised learning

> "Learning without a teacher”
» Data set S = {z1,...,2,} with z; € R?
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Unsupervised learning

> "Learning without a teacher”
» Data set S = {z1,...,2,} with z; € R?
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Unsupervised learning problems

Dimensionality reduction
Clustering

Density estimation
Learning association rules

Learning adaptive data representations
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Supervised vs unsupervised methods

» In supervised learning we have a measure of success — based on a
loss function and on a model selection procedure e.g., cross
validation

» In unsupervised learning we don't !
— hence many heuristics and the proliferation of many algorithms
difficult to evaluate — lack of theoretical grounds
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Clustering

» Clustering is a widely used technique for data analysis, with
applications ranging from statistics, computer science, biology, social

sciences....

» Goal:
Grouping/segmenting a collection of objects into subsets or clusters.

(Possibly also) arrange clusters into a natural hierarchy
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Clustering examples

start clustered randoml random2 random3

Michael B. Eisen et al. PNAS 1998;95:14863-14368
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Clustering algorithms

» Combinatorial algorithms - directly from data {z;}?" ; + some
notion of similarity or dissimilarity

» Mixture models - based on some assumption on the underlying
probability distribution
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Combinatorial clustering

» We assume some knowledge on the number of clusters K < n.
Goal: associate a cluster label k = {1,..., K} with each datum, by
defining an encoder C s.t.

> We look for an encoder C* that achieves the goal of clustering data,
according to some specific requirement of the algorithm and based
on data pairs dissimilarities
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Combinatorial clustering

Criterion: assign to the same cluster similar/close data

We may start from the following "loss” or energy function (within
class):

K
W(C):%Z S dlw, )

k=1cC(i)=k C(i")=k
C* = argmin W(C)

Unfeasible in practice!

K
S(N,K) = % > (-Kk (f) k"
T k=1

and notice that S(10,4) ~ 34K while S(19,4) ~ 10%°

MLCC 2018



K-means algorithm

It refers specifically to the Euclidean distance.
> initialize cluster centroids m; k= 1,..., K at random
> repeat until convergence

1. assign data to centroids C(x;) = arg mini << ||zi — mu||?
2. update centroids
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K-means functional

K-means corresponds to minimizing the following function
2
-y 2 llai=mdl
k=1C(i)=

The algorithm is an alternating optimization procedure, with convergence
guarantees in practice (no rates).

The function J is not convex, thus K-means is not guaranteed to find a
global minimum.

Computational cost
1. data assignment O(Kn)
2. cluster centers updates O(n)
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K-means

Initial Centroids Initial Partition

Iteration Number 2 Iteration Number 20

Figure from Hastie, Tibshirani, Friedman
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Example Vector Quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962)
was one of the founders of modern day statistics, to
whom we owe mazimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the
left is a 1024 x 1024 grayscale image at 8 bits per pizel.
The center image is the result of 2 x 2 block V@, us-
ing 200 code wvectors, with a compression rate of 1.9
bits/pizel. The right image uses only four code vectors,
with a compression rate of 0.50 bits/pizel

Figure from Hastie, Tibshirani, Friedman
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Spectral clustering - similarity graph

> A set of unlabeled data {x;}}_, and some notion of similarity
between data pairs s;;

» We may represent them as a similarity graph G = (V, E)
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» Clustering can be seen as a graph partitioning problem
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Spectral clustering - graph notation

G = (V, E) undirected graph

» 1/ : data correspond to the vertices

» F : Weighted adjacency matrix W = (wij)zjzl with w;; > 0.
W is symmetric w;; = wj;, as G is undirected.

> Degree of a vertex: d; = 2?21 Wij
Degree matrix: D = diag(d;)

» Sub-graphs:
A,BCV then W(A,B)=>"
Subgraph size:

icA,jeB Wij

— |A] number of vertices

—vol(4) = ¥, 0 di
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Spectral clustering - how to build the graph

We use the available pairwise similarities s;;

> e-neighbourhood graph: connect vertices whose similarity is larger
than e

» KNN graph: connect vertex v; to its K neighbours. Not symmetric!
> fully connected graph: s;; = exp(—d3;/20?)
d is the Euclidean distance, o > 0 controls the width of a
neighborhood
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Spectral clustering - how to build the graph

> n can be very large, it would be preferable if W was sparse
> In general it is better some notion of locality

) sy if j isa KNNof ¢
Wij = 0 otherwise
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Spectral clustering - graph Laplacians

Unnormalized graph Laplacian: L =D — W
Properties:

» Forall feR"
FTLf =5 3 wilfi )

ij=1

fTLf = f'Df—f'wy

= D dif} = fifjwi
i i

i

- % (Z(Zwij)fz? _2Zfifjwij +Z(Zwij)ff> -
— %Zwl'j(fi_fj)2
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Spectral clustering - graph Laplacians

Unnormalized graph Laplacian: L =D — W

» For each vector f € R"

1 n
fTLf = 5 > wi(fi — £5)?
ij=1
The graph Laplacian measures the variation of f on the graph
(fTLf small if close points have close function values f;)
» [ is symmetric and positive semi-definite

> The smallest eigenvalue of L is 0 and its corresponding eigenvector
is a vector of ones

» L has N non negative real-valued eigenvalues
0= <A <...< )y
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Spectral clustering - graph Laplacians

Unnormalized graph Laplacian: L =D — W

» For each vector f € R"

1 n
fTLf = 5 > wi(fi — £5)?
ij=1
The graph Laplacian measures the variation of f on the graph
(fTLf small if close points have close function values f;)
» [ is symmetric and positive semi-definite

> The smallest eigenvalue of L is 0 and its corresponding eigenvector
is a vector of ones

» L has N non negative real-valued eigenvalues
0= <A <...< )y

Laplacian and clustering: the multiplicity k£ of Ay = 0 equals the
number of connected components in the graph
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Spectral clustering - graph Laplacians

Unnormalized graph Laplacian:

L=D-W

Normalized graph Laplacians:
Lnl —_ D71/2LD71/2 - D71/2WD71/2

Lyo=D'L=I-D'W
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A spectral clustering algorithm

Graph Laplacian
— compute the Unnormalized Graph Laplacian L (unnormalized
algorithm)
— compute a Normalized Graph Laplacian L1 or Ln2 (normalized
algorithm)
compute the first k eigenvectors of the Laplacian (k number of
clusters to compute)

let U, € R™** be the matrix containing the k eigenvectors as
columns

y; € R* be the vector obtained by the j-th row of U j =1...n.
Apply k-means to {y;}

MLCC 2018

26



A spectral clustering algorithm

Computational cost

» Eigendecomposition O(n?)

» It may be enough to compute the first k eigenvalues/eigenvectors.

There are algorithms for this

MLCC 2018
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The number of clusters
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Semi-supervised learning

Laplacian-based regularization algorithms (Belkin et al. 04)
Set of labeled examples: {(z;,y;)}7,

Set of unlabeled examples: {(z;) ?i:-s—l

f —argmmfze (i), yi) + Aall £I? + ngLf
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Wrapping up

In this class we introduced the concept of data clustering and sketched
some of the best known algorithms

Ulrike Von Luxburg - A tutorial on Spectral Clustering
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