MLCC 2018 Regularization Networks I: Linear Models

Lorenzo Rosasco UNIGE-MIT-IIT

About this class

- \triangleright We introduce a class of learning algorithms based on Tikhonov regularization
- \triangleright We study computational aspects of these algorithms .

Empirical Risk Minimization (ERM)

- \triangleright Empirical Risk Minimization (ERM): probably the most popular approach to design learning algorithms.
- \triangleright General idea: considering the empirical error

$$
\hat{\mathcal{E}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)),
$$

as a proxy for the expected error

$$
\mathcal{E}(f) = \mathbb{E}[\ell(y, f(x))] = \int dx dy p(x, y) \ell(y, f(x)).
$$

The Expected Risk is Not Computable

Recall that

 $\blacktriangleright \ell$ measures the price we pay predicting $f(x)$ when the true label is y

 \blacktriangleright $\mathcal{E}(f)$ cannot be directly computed, since $p(x, y)$ is unknown

From Theory to Algorithms: The Hypothesis Space

To turn the above idea into an actual algorithm, we:

- \blacktriangleright Fix a suitable hypothesis space H
- \blacktriangleright Minimize $\hat{\mathcal{E}}$ over H

 H should allow feasible computations and be *rich*, since the complexity of the problem is not known a priori.

Example: Space of Linear Functions

The simplest example of H is the space of linear functions:

$$
H = \{ f : \mathbb{R}^d \to \mathbb{R} \; : \; \exists w \in \mathbb{R}^d \text{ such that } f(x) = x^T w, \; \forall x \in \mathbb{R}^d \}.
$$

 \blacktriangleright Each function f is defined by a vector w

$$
\blacktriangleright f_w(x) = x^T w.
$$

Rich Hs May Require Regularization

- If H is rich enough, solving ERM may cause overfitting (solutions highly dependent on the data)
- \blacktriangleright Regularization techniques restore stability and ensure generalization

Tikhonov Regularization

Consider the Tikhonov regularization scheme,

$$
\min_{w \in \mathbb{R}^d} \hat{\mathcal{E}}(f_w) + \lambda \|w\|^2 \tag{1}
$$

It describes a large class of methods sometimes called Regularization Networks.

The Regularizer

- \blacktriangleright $||w||^2$ is called regularizer
- \blacktriangleright It controls the stability of the solution and prevents overfitting
- \blacktriangleright λ balances the error term and the regularizer

Loss Functions

- \triangleright Different loss functions ℓ induce different classes of methods
- \triangleright We will see common aspects and differences in considering different loss functions
- \triangleright There exists no general computational scheme to solve Tikhonov Regularization
- \triangleright The solution depends on the considered loss function

The Regularized Least Squares Algorithm

Regularized Least Squares: Tikhonov regularization

$$
\min_{w \in \mathbb{R}^D} \hat{\mathcal{E}}(f_w) + \lambda \|w\|^2, \quad \hat{\mathcal{E}}(f_w) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f_w(x_i)) \tag{2}
$$

Square loss function:

$$
\ell(y, f_w(x)) = (y - f_w(x))^2
$$

We then obtain the RLS optimization problem (linear model):

$$
\min_{w \in \mathbb{R}^D} \frac{1}{n} \sum_{i=1}^n (y_i - w^T x_i)^2 + \lambda w^T w, \quad \lambda \ge 0.
$$
 (3)

Matrix Notation

- \blacktriangleright The $n \times d$ matrix X_n , whose rows are the input points
- \blacktriangleright The $n \times 1$ vector Y_n , whose entries are the corresponding outputs.

With this notation,

$$
\frac{1}{n}\sum_{i=1}^{n}(y_i - w^T x_i)^2 = \frac{1}{n}||Y_n - X_n w||^2.
$$

Gradients of the ER and of the Regularizer

By direct computation,

Gradient of the empirical risk w. r. t. w

$$
-\frac{2}{n}X_n^T(Y_n - X_nw)
$$

Gradient of the regularizer w. r. t. w

 $2w$

The RLS Solution

By setting the gradient to zero, the solution of RLS solves the linear system

$$
(X_n^T X_n + \lambda n I)w = X_n^T Y_n.
$$

 λ controls the *invertibility* of $(X_n^T X_n + \lambda nI)$

Choosing the Cholesky Solver

- \triangleright Several methods can be used to solve the above linear system
- \blacktriangleright Cholesky decomposition is the method of choice, since

 $X_n^T X_n + \lambda I$

is symmetric and positive definite.

Time Complexity

Time complexity of the method :

- \blacktriangleright Training: $O(nd^2)$ (assuming $n >> d$)
- \blacktriangleright Testing: $O(d)$

Dealing with an Offset

For linear models, especially in low dimensional spaces, it is useful to consider an offset:

$$
w^T x + b
$$

How to estimate b from data?

Idea: Augmenting the Dimension of the Input Space

- \triangleright Simple idea: augment the dimension of the input space, considering $\tilde{x} = (x, 1)$ and $\tilde{w} = (w, b)$.
- \triangleright This is fine if we do not regularize, but if we do then this method tends to prefer linear functions passing through the origin (zero offset), since the regularizer becomes:

$$
\|\tilde{w}\|^2 = \|w\|^2 + b^2.
$$

Avoiding to Penalize the Solutions with Offset

We want to regularize considering only $\|w\|^2$, without penalizing the offset.

The modified regularized problem becomes:

$$
\min_{(w,b)\in\mathbb{R}^{D+1}}\frac{1}{n}\sum_{i=1}^n(y_i - w^T x_i - b)^2 + \lambda \|w\|^2.
$$

Solution with Offset: Centering the Data

It can be proved that a solution w^*, b^* of the above problem is given by

$$
b^* = \bar{y} - \bar{x}^T w^*
$$

where

$$
\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i
$$

$$
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

Solution with Offset: Centering the Data

 w^* solves

$$
\min_{w \in \mathbb{R}^D} \frac{1}{n} \sum_{i=1}^n (y_i^c - w^T x_i^c)^2 + \lambda \|w\|^2.
$$

where
$$
y_i^c = y - \bar{y}
$$
 and $x_i^c = x - \bar{x}$ for all $i = 1, ..., n$.

Note: This corresponds to centering the data and then applying the standard RLS algorithm.

Introduction: Regularized Logistic Regression

Regularized logistic regression: Tikhonov regularization

$$
\min_{w \in \mathbb{R}^d} \hat{\mathcal{E}}(f_w) + \lambda \|w\|^2, \quad \hat{\mathcal{E}}(f_w) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f_w(x_i)) \tag{4}
$$

With the *logistic loss function*:

$$
\ell(y, f_w(x)) = \log(1 + e^{-y f_w(x)})
$$

The Logistic Loss Function

Figure: Plot of the logistic regression loss function

Minimization Through Gradient Descent

- \blacktriangleright The logistic loss function is differentiable
- \triangleright The candidate to compute a minimizer is the gradient descent (GD) algorithm

Regularized Logistic Regression (RLR)

- \triangleright The regularized ERM problem associated with the logistic loss is called regularized logistic regression
- \triangleright Its solution can be computed via gradient descent
- \blacktriangleright Note:

$$
\nabla \hat{\mathcal{E}}(f_w) = \frac{1}{n} \sum_{i=1}^n x_i \frac{-y_i e^{-y_i x_i^T w_{t-1}}}{1 + e^{-y_i x_i^T w_{t-1}}} = \frac{1}{n} \sum_{i=1}^n x_i \frac{-y_i}{1 + e^{y_i x_i^T w_{t-1}}}
$$

RLR: Gradient Descent Iteration

For $w_0 = 0$, the GD iteration applied to

$$
\min_{w \in \mathbb{R}^d} \hat{\mathcal{E}}(f_w) + \lambda \|w\|^2
$$

is

$$
w_{t} = w_{t-1} - \gamma \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} \frac{-y_{i}}{1 + e^{y_{i}x_{i}^{T}w_{t-1}}} + 2\lambda w_{t-1}\right)}_{a}
$$

for $t = 1, \ldots T$, where

 $a = \nabla(\hat{\mathcal{E}}(f_w) + \lambda ||w||^2)$

Logistic Regression and Confidence Estimation

- \triangleright The solution of logistic regression has a probabilistic interpretation
- \blacktriangleright It can be derived from the following model

$$
p(1|x) = \underbrace{\frac{e^{x^T w}}{1 + e^{x^T w}}}_{h}
$$

where h is called *logistic function*.

 \triangleright This can be used to compute a *confidence* for each prediction

Support Vector Machines

Formulation in terms of Tikhonov regularization:

$$
\min_{w \in \mathbb{R}^d} \hat{\mathcal{E}}(f_w) + \lambda \|w\|^2, \quad \hat{\mathcal{E}}(f_w) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f_w(x_i)) \tag{5}
$$

With the Hinge loss function:

$$
\ell(y, f_w(x)) = |1 - yf_w(x)|_+
$$

A more classical formulation (linear case)

$$
w^* = \min_{w\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n|1-y_iw^\top x_i|_++\lambda\|w\|^2
$$
 with $\lambda=\frac{1}{C}$

A more classical formulation (linear case)

$$
w^* = \min_{w \in \mathbb{R}^d, \xi_i \ge 0} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i \quad \text{subject to}
$$

$$
y_i w^\top x_i \ge 1 - \xi_i \quad \forall i \in \{1 \dots n\}
$$

A geometric intuition - classification

In general do you have many solutions

A geometric intuition - classification

Intuitively I would choose an "equidistant" line

A geometric intuition - classification

Intuitively I would choose an "equidistant" line

Maximum margin classifier

I want the classifier that

- \blacktriangleright classifies perfectly the dataset
- \blacktriangleright maximize the distance from its closest examples

Point-Hyperplane distance

How to do it mathematically? Let w our separating hyperplane. We have

 $x = \alpha w + x_1$

Margin

An hyperplane w well classifies an example $\left(x_i, y_i\right)$ if

▶
$$
y_i = 1
$$
 and $w^\top x_i > 0$ or\n\n $\triangleright y_i = -1$ and $w^\top x_i < 0$ \n\ntherefore x_i is well classified iff $y_i w^\top x_i > 0$ \n\nMargin: $m_i = y_i w^\top x_i$ \n\nNote that $x_\perp = x - \frac{y_i m_i}{\|w\|} w$

Maximum margin classifier definition

I want the classifier that

- \blacktriangleright classifies perfectly the dataset
- \blacktriangleright maximize the distance from its closest examples

$$
w^* = \max_{w \in \mathbb{R}^d} \min_{1 \le i \le n} d(x_i, w)^2 \quad \text{subject to}
$$

$$
m_i > 0 \quad \forall i \in \{1 \dots n\}
$$

Let call μ the smallest m_i thus we have

$$
w^* = \max_{w \in \mathbb{R}^d} \min_{1 \le i \le n, \mu \ge 0} ||x_i|| - \frac{(x_i^\top w)^2}{||w||^2} \text{ subject to}
$$

$$
y_i w^\top x_i \ge \mu \quad \forall i \in \{1 \dots n\}
$$

that is

$$
w^* = \max_{w \in \mathbb{R}^d} \min_{\mu \ge 0} -\frac{\mu^2}{\|w\|^2} \quad \text{subject to}
$$

$$
y_i w^\top x_i \ge \mu \quad \forall i \in \{1 \dots n\}
$$

$$
w^* = \max_{w \in \mathbb{R}^d, \mu \ge 0} \frac{\mu^2}{\|w\|^2} \quad \text{subject to}
$$
\n
$$
y_i w^\top x_i \ge \mu \quad \forall i \in \{1 \dots n\}
$$
\nNote that if $y_i w^\top x_i \ge \mu$, then $y_i (\alpha w)^\top x_i \ge \alpha \mu$ and $\frac{\mu^2}{\|w\|^2} = \frac{(\alpha \mu)^2}{\|\alpha w\|^2}$ for any $\alpha \ge 0$. Therefore we have to fix the scale parameter, in particular we choose $\mu = 1$.

$$
w^* = \max_{w \in \mathbb{R}^d} \frac{1}{\|w\|^2} \quad \text{subject to}
$$

$$
y_i w^\top x_i \ge 1 \quad \forall i \in \{1 \dots n\}
$$

$$
w^* = \min_{w \in \mathbb{R}^d} ||w||^2 \text{ subject to}
$$

$$
y_i w^\top x_i \ge 1 \quad \forall i \in \{1 \dots n\}
$$

What if the problem is not separable?

We relax the constraints and penalize the relaxation

What if the problem is not separable?

We relax the constraints and penalize the relaxation

$$
w^* = \min_{w \in \mathbb{R}^d, \xi_i \ge 0} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i \quad \text{subject to}
$$

$$
y_i w^\top x_i \ge 1 - \xi_i \quad \forall i \in \{1 \dots n\}
$$

where C is a penalization parameter for the average error $\frac{1}{n} \sum_{i=1}^n \xi_i.$

Dual formulation

It can be shown that the solution of the SVM problem is of the form

$$
w = \sum_{i=1}^{n} \alpha_i y_i x_i
$$

where α_i are given by the solution of the following quadratic programming problem:

$$
\max_{\alpha \in \mathbb{R}^n} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j x_i^T x_j \quad i = 1, \dots, n
$$
\n
$$
\text{subj to} \quad \alpha_i \ge 0
$$

- \blacktriangleright The solution requires the estimate of n rather than D coefficients
- \triangleright α_i are often sparse. The input points associated with non-zero coefficients are called support vectors

Wrapping up

Regularized Empirical Risk Minimization

$$
w^* = \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \|w\|^2
$$

Examples of Regularization Networks

$$
\blacktriangleright \ell(y,t) = (y-t)^2
$$
 (Square loss) leads to Least Squares

- ► $\ell(y, t) = log(1 + e^{-yt})$ (Logistic loss) leads to Logistic Regression
- $I(x, t) = |1 yt|_+$ (Hinge loss) leads to Maximum Margin Classifier

Next class

... beyond linear models!