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About this class

» We introduce a class of learning algorithms based on Tikhonov
regularization

» We study computational aspects of these algorithms .

MLCC 2017



Empirical Risk Minimization (ERM)

» Empirical Risk Minimization (ERM): probably the most popular
approach to design learning algorithms.

» General idea: considering the empirical error

n

EU) = D i T )

as a proxy for the expected error

E(f) =E[(y, f(z))] = /da?dyp(x,y)f(yyf(ir))-
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The Expected Risk is Not Computable

Recall that
> ¢ measures the price we pay predicting f(x) when the true label is y

» E(f) cannot be directly computed, since p(z,y) is unknown
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From Theory to Algorithms: The Hypothesis Space

To turn the above idea into an actual algorithm, we:
» Fix a suitable hypothesis space H
» Minimize & over H

H should allow feasible computations and be rich, since the complexity
of the problem is not known a priori.
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Example: Space of Linear Functions

The simplest example of H is the space of linear functions:

H={f:R' 3R : Jwe R?such that f(z) = 27w, Vo € RY}.

» Each function f is defined by a vector w

> ful(z) =2Tw.
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Rich Hs May Require Regularization

» If H is rich enough, solving ERM may cause overfitting (solutions
highly dependent on the data)

» Regularization techniques restore stability and ensure generalization
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Tikhonov Regularization

Consider the Tikhonov regularization scheme,
min £(f,,) + Aw||® (1)
weRd

It describes a large class of methods sometimes called Regularization
Networks.
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The Regularizer

> |lwl||? is called regularizer
> It controls the stability of the solution and prevents overfitting

> ) balances the error term and the regularizer
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Loss Functions

Different loss functions ¢ induce different classes of methods

We will see common aspects and differences in considering different
loss functions

There exists no general computational scheme to solve Tikhonov
Regularization

The solution depends on the considered loss function
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The Regularized Least Squares Algorithm

Regularized Least Squares: Tikhonov regularization
4 ; 1<
min £(8) + Muly E(F) = 2Dt ful@)) (@)
i=1
Square loss function:

Uy, fu(r)) = (y — fw(x))z

We then obtain the RLS optimization problem (linear model):

1
min — Z(yl —whz)? + wlw, A>0. (3)
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Matrix Notation

» The n x d matrix X,,, whose rows are the input points

» The n x 1 vector Y,,, whose entries are the corresponding outputs.

With this notation,

1 1
= Z(yi —wlz;)? = =Y, - Xpwl?.
n < n
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Gradients of the ER and of the Regularizer

By direct computation,
» Gradient of the empirical risk w. r. t. w
2 o1
—=X, (Y, — Xp,w)
n
» Gradient of the regularizer w. r. t. w

2w
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The RLS Solution

By setting the gradient to zero, the solution of RLS solves the linear
system

(XX, + snDw = X"Y,.

A controls the invertibility of (X X,, + AnlI)
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Choosing the Cholesky Solver

» Several methods can be used to solve the above linear system

» Cholesky decomposition is the method of choice, since
XIX, + M

is symmetric and positive definite.
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Time Complexity

Time complexity of the method :

» Training: O(nd?) (assuming n >> d)

> Testing: O(d)
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Dealing with an Offset

For linear models, especially in low dimensional spaces, it is useful to
consider an offset:

wlz+b

How to estimate b from data?
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Idea: Augmenting the Dimension of the Input Space

» Simple idea: augment the dimension of the input space, considering
Z = (xz,1) and w = (w, b).

» This is fine if we do not regularize, but if we do then this method

tends to prefer linear functions passing through the origin (zero
offset), since the regularizer becomes:

lB]I* = flw]]* + b*.
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Avoiding to Penalize the Solutions with Offset

We want to regularize considering only ||w||?, without penalizing the
offset.

The modified regularized problem becomes:

n

. 1
o D (i —w e — ) + Aw|.

i=1
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Solution with Offset: Centering the Data

It can be proved that a solution w*, b* of the above problem is given by
b* _ g _ ij*

where
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Solution with Offset: Centering the Data

w* solves
1 n
: c T,.c\2 2
min — E (g5 —w x5)* + AMw]||®.
weRP N 4
i=1
where yf =y —yand z{ =x —Z foralli =1,...,n.

Note: This corresponds to centering the data and then applying the
standard RLS algorithm.
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Introduction: Regularized Logistic Regression

Regularized logistic regression: Tikhonov regularization

n

min £(u) + Ml E(fu) = = 3 Ui, fule)

i=1

With the logistic loss function:

g(y7 fw(flf')) = lOg(l + e_yfw(x))
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The Logistic Loss Function

Logistic loss

Figure: Plot of the logistic regression loss function
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Minimization Through Gradient Descent

» The logistic loss function is differentiable

» The candidate to compute a minimizer is the gradient descent (GD)
algorithm

MLCC 2017 24



Regularized Logistic Regression (RLR)

» The regularized ERM problem associated with the logistic loss is
called regularized logistic regression

> |ts solution can be computed via gradient descent
> Note:

n

Vé(f) ==Y e

n

_yie_yim;‘rwt—l

n
) o1 Zx —Yi
vt T, [
—YiT; Wi—1 n Yil; We—1
= 1Tte - 1te
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RLR: Gradient Descent lteration

For wg = 0, the GD iteration applied to

in £(f,) + Mwl|?
Inin, (fw) + Mw]]

n
1
Wy = Wi—1 — 75 _
k K n - 1+eyﬂ? We—1

+ 22w 1)

a

fort=1,...T, where

= V(E(fu) + Allw]?)
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Logistic Regression and Confidence Estimation

» The solution of logistic regression has a probabilistic interpretation

» It can be derived from the following model

exTw
1+er"w
——

h

p(llz) =

where h is called logistic function.

» This can be used to compute a confidence for each prediction
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Support Vector Machines

Formulation in terms of Tikhonov regularization:

n

min £(fu) + Ml E(fu) = = 3 s, fule)

i=1

With the Hinge loss function:

g(yvfw(x)) = |1 - yfw(x)|+

o
IR
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A more classical formulation (linear case)

w* = min —Z 11— yiw "z + Mw]|?

with A = %

MLCC 2017
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A more classical formulation (linear case)

C n
w* = min ||lw|?® + _Z& subject to
wER,£; >0 n =

yiw'z; >1—& Vie{l...n}
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A geometric intuition - classification

In general do you have many solutions

What do you select?
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A geometric intuition - classification

Intuitively | would choose an “equidistant” line
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A geometric intuition - classification

Intuitively | would choose an “equidistant” line
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Maximum margin classifier

| want the classifier that
> classifies perfectly the dataset

» maximize the distance from its closest examples
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Point-Hyperplane distance

How to do it mathematically? Let w our separating hyperplane. We have

Tr=qQw -+ x|

and z; =z — aw.

w

aw

o

Point-Hyperplane distance: d(z,w) = ||z ||
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Margin

An hyperplane w well classifies an example (z;,y;) if
» y; =1and w'z; >0 or
> Yi
therefore x; is well classified iff y;w " z; > 0
Margin: m; = y;w ' z;

Note that 2| =z — y‘fﬂ"w

—landw'az; <0
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Maximum margin classifier definition

| want the classifier that
> classifies perfectly the dataset
» maximize the distance from its closest examples

w* = max min d(z;,w)? subject to
weRd 1<i<n

m; >0 Vie{l...n}

Let call i the smallest m; thus we have

T2
w* = max min ||z — (2 w)

——— subject to
weRd 1<i<n,u>0 [|lw]|?

yow @ >p Vie{l...n}

that is
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w*

Computation of w*

2

= max min — subject to

weRd p>0  [lw]|?

yiw' x; >p Vi {l...n}
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Computation of w*

2
w* = max ——= subject to
weR?, 1>0 H’LUH2

yiw' x; >p Vie{l...n}

2 2
Note that if y;w " x; > u, then y;(cw) " 2; > ap and HZW = % for
any « > 0. Therefore we have to fix the scale parameter, in particular we

choose p = 1.
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Computation of w*

w* = subject to

max ——
wesd [[w]]?

yiw'xz; >1 Vie{l...n}
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Computation of w*

*

w* = min |lw||* subject to
weR?

yiw' z; >1 Vie{l...n}
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What if the problem is not separable?

We relax the constraints and penalize the relaxation

w* = min |lw||? subject to
weR?

yw' z; >1 Vie{l...n}
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What if the problem is not separable?

We relax the constraints and penalize the relaxation

O n
w* = min wl]? + = ; subject to
smin ol + 5356 b

yw z; >1 -6 Vie{l...n}

. . 1 —n
where C'is a penalization parameter for the average error = > " | &;.
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Dual formulation

It can be shown that the solution of the SVM problem is of the form

n
w = E QiYiTi
i=1

where «; are given by the solution of the following quadratic
programming problem:

n . _ Lo ool §o—
gg'ﬁ)ﬁ Zi:1az QZiJ:lyzy]aza]fCi-Tg i=1,...,n

subj to a; >0
> The solution requires the estimate of n rather than D coefficients

> «; are often sparse. The input points associated with non-zero
coefficients are called support vectors

MLCC 2017 44



Wrapping up

Regularized Empirical Risk Minimization

n

1
 _ . 72 : S I 2
v wel]éld n i=1 g(y“w xl) ’ )\”wH

Examples of Regularization Networks
> ((y,t) = (y —t)? (Square loss) leads to Least Squares
» ((y,t) =log(1+ e ") (Logistic loss) leads to Logistic Regression
> {(y,t) = |1 — yt|+ (Hinge loss) leads to Maximum Margin Classifier
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Next class

... beyond linear models!
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