MLCC 2018
Deep Learning

Lorenzo Rosasco
UNIGE-MIT-IIT



What? Classification

Object classification

What's in this image?

Note: beyond vision: classify graphs, strings, networks, time-series. ..
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What makes the problem hard?

> Viewpoint

Note: ldentification vs categorization. . .
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Categorization: a learning approach
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Supervised learning

Given
(-T17y1)a ey (xnayn)

find f such that

Signf($new) = Ynew

» 2 € RP a vectorization of an image

» y = =1 a label (mug/remote)
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Learning and data representation

Consider
flx) =w'®(x)

a two steps learning scheme is often considered

> supervised learning of w

> expert design or unsupervised learning of the data representation ®
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a two steps learning scheme is often considered

> supervised learning of w

> expert design or unsupervised learning of the data representation ®
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Data representation

& :RP 5 RP

A mapping of data in a new format better suited for further processing
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Data representation by design

Dictionaries of features
» Wavelet & friends.
» SIFT, HoG etc.

Kernels
;112
> Classic off the shelf: Gaussian K(z,z') = e=ll==2""

» Structured input: kernels on histograms, graphs etc.
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In practice all is multi-layer!
(an old slide)

Data representation schemes e.g. vision-speech, involve multiple (/ayers).

Pipeline

Raw data are often processed:
» first computing some of low level features,
» then learning some mid level representation,
> ...

> finally using supervised learning.

These stages are often done separately:
» good way to exploit unlabelled data. ..

> but is it possible to design end-to-end learning systems?
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In practice all is deep-learning!
(updated slide)

Data representation schemes e.g. vision-speech, involve deep learning.
Pipeline

> Design some wild- but “differentiable” hierarchical architecture.
» Proceed with end-to-end learning!!

Max Max
poaling paoling

Architecture (rather than feature) engineering
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Road Map

Part |: Basics neural networks
» Neural networks definition

» Optimization +approximation and statistics

Part II: One step beyond
» Auto-encoders
» Convolutional neural networks

» Tips and tricks
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Part |: Basic Neural Networks
‘ T
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Shallow nets

flx)=w"®(z), z— d(z)
Fixed
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Shallow nets

flx)=w"®(z), z— d(z)
Fixed

Examples

» Dictionaries
®(z) = cos(B z) = (cos(B] x),... ,cos(ﬂ;—x))

with B = 1, ..., B, fixed frequencies.
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Shallow nets

flx)=w"®(z), z— d(z)
Fixed

Examples
» Dictionaries
®(z) = cos(B z) = (cos(B] x),... ,cos(ﬂ;—x))

with B = 1, ..., B, fixed frequencies.

» Kernel methods
B(z) = (e 102l . e~lIBnal?)

with 81 = x1, ..., 8, = =, the input points.
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Shallow nets (cont.)

Fixed
Empirical Risk Minimization (ERM)
min » (yi — w' ®(x;))?
=1

Note:
The function f depends linearly on w, the ERM problem is convex!
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Interlude: optimization by Gradient Descent (GD)

Batch gradient descent

~

wt+1 = Wt — ’vaé’(wt)

where

so that .
VE(w) = =23 ®(x;) " (y; — w' &(x,))
i=1

» Constant step-size depending on the curvature (Hessian norm)

» It is a descent method
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Gradient descent illustrated

J(w) Initial ! Gradient
we|ght "l/
I

Global cost minimum
JinlW)

-
>
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Stochastic gradient descent (SGD)

Wip1 = wi + 27, (w1) " (ye — w D(ay))

Compare to

wepr =w+2y Y P(2:) " (4 — w] D(xs))
=1

» Decaying step-size v = 1/+/t

> Lower iteration cost

> It is not a descent method (SGD?)

» Multiple passes (epochs) over data needed
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SGD vs GD

gradient descent

ITERATIONS
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Summary so far

Given data (z1,91),--., (%n,yn) and a fixed representation ®

» Consider
flz) =w' ®(z)

» Find w by SGD

Wity = we 4 27D (zy) (e — w ' (2y))

Can we jointly learn ®7?
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Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d
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Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d

Let dy = D and

Py :R¥-r s RE ¢=1,...,L
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Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d

Let dy = D and
Py :R¥-r s RE ¢=1,...,L

and in particular
(I)ZZUOW@, EZL...,L

where
Wp:Rd-1 s R¥* ¢=1,...,L

linear/affine and o is a non linear map acting component-wise

c:R—R.
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Deep neural nets

fla)=w'®L(x),

P =00l

(I)ngLO“-OEl

compositional representation

EL :(TOVVL
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Deep neural nets

fx)=w"®(z), O, =0po0---00
compositional representation
61:001/)@71 EL:(TOLVL
ERM
min_ Z(yz —w (7))’
“)7(W7>.7 n i=1
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Neural networks jargoon

bp(x) =W ...0(Wao(Wyix)))

» Each intermediate representation corresponds to a (hidden) layer

» The dimensionalities (dy), correspond to the number of hidden
units
» The non linearity o is called activation function
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Neural networks & neurons

® 6
HL, TAM ANEURON

» Each neuron compute an inner product based on a column of a
weight matrix W

» The non-linearity o is the neuron activation function.
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Deep neural networks
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Activation functions

For o € R consider,
> sigmoid s(a) = 1/(1 + e )¢,
> hyperbolic tangent s(a) = (e* —e™®)/(e® + e~ %),
» RelLU s(a) = |a|+ (aka ramp, hinge),
> Softplus s(a) = log(1 + e®).

5_. ..........................
= sigmoid
=——=thanh
4_ ........................
——RelLU
=——=softplus
gl ——sofpus| S
2,
1,
0 ;/ 77777 ﬁ
5 0 5
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Some questions

Foowe, (@) =w @y, (), Qw,, =o(Wr...0(Wao(Wix)))

We have our model but:
» Optimization: Can we train efficiently?
» Approximation: Are we dealing with rich models?

» Statistics: How hard is it generalize from finite data?
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Neural networks function spaces

Consider the non linear space of functions of the form
fw,(We)e : RD — R,

Foowe, (@) =w @y, (), Py, =o(Wr...o(Wao(Wix)))

where w, (Wy), may vary.

Very little structure. .. but we can :
> train by gradient descent (next)
> get (some) approximation/statistical guarantees (later)

L.Rosasco



One layer neural networks

Consider only one hidden layer:

fow(@) =w’ ij TW]

and ERM again
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Computations

Consider

glinf(w, W),  E(w,W)= Z(yi — fwn (@i))?.
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Computations

Consider

Problem is non-convex! ( possibly smooth depending on o)

3 S
A XA I
N RN VAN
A RGN
NN iy RN
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Back-propagation & GD

Empirical risk minimization,

An approximate minimizer is computed via the following gradient
method

o€
w;’-H = wi— g ‘(wt, W)
j
o€
Wittt wt 1 ppt
J.k - gk TVt 8”9‘,1@ (w ) )

where the step-size (7;); is often called learning rate.
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Back-propagation & chain rule

Direct computations show that:

o€ i
S (W W) = =23 (i = faw) (@) b
J i=1
Aji
dE u -
g ) = 72;(%4@,%(%)))% (w] ) 2

N,k

Back-prop equations: 7 = Ajic;o’(w) x)

Using above equations, the updates are performed in two steps:

» Forward pass compute function values keeping weights fixed,

» Backward pass compute errors and propagate

» Hence the weights are updated.
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W't

t41
Wj,k

SGD is typically preferred

Wi = Y2y — fowewy) (@) hje
Wi =72 = flwesa,w) (@e)))wjo’(

T
wjx

e
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Non convexity and SGD

Starting pt.

Local minima

Global minima
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Few remarks

» Optimization by gradient methods- typically SGD

» Online update rules are potentially biologically plausible- Hebbian

vV v.v vy

learning rules describing neuron plasticity
Multiple layers can be analogously considered
Multiple step-size per layers can be considered
Initialization is tricky- more later

NO convergence guarantees

More tricks later
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Some questions

» What is the benefit of multiple layers?

» Why does stochastic gradient seem to work?
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Wrapping up part |

» Learning classifier and representation
» From shallow to deep learning

» SGD and backpropagation
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Coming up

» Autoencoders and unsupervised data?
» Convolutional neural networks

» Tricks and tips
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Part |l

ONE STEP BEYOND...
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Unsupervised learning with neural networks

» Because unlabeled data abound

» Because one could use obtained weight for initialize supervised
learning (pre-training)
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Auto-encoders

z Q O O O O

W /
> A neural network with one input layer, one output layer and one
(or more) hidden layers connecting them.

Q

T

O O Q

» The output layer has equally many nodes as the input layer,
> It is trained to predict the input rather than some target output.
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Auto-encoders (cont.)

An auto encoder with one hidden layer of k units, can be seen as a
representation-reconstruction pair:

®:RP - F.,, ®x)=0cWz), VreRP
with F, = R*, k < d and

U:F,—»RP, W(E)=c (W), VBE F.
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Auto-encoders & dictionary learning

O(z) =0 (Wz),  ¥(B)=0(W'P)

Reconstructive approaches have connections with so called energy
models [LeCun et al....]

Possible probabilistic/Bayesian interpretations/variations (e.g.
Boltzmann machine [Hinton et al....])

The above formulation is closely related to dictionary learning.

> The weights can be seen as dictionary atoms.
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Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al '06]. ..

(P10T;1)o(DPyoWy) -0 (PyoWy)
——

Autoencoder

... with the potential of obtaining richer representations.
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Are auto-encoders useful?

> Pre-training has not delivered as hoped: supervised training on big
data-sets is best...

» Still a lot of work on the topic: variational autoencoders, denoising
autoencoderes, sparse autoencoders...
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Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8xE B@axd 20@1x1
| =

Convolution Subsampling Convolution Subsampling  Convolution

In many applications the connectivity of neural networks is limited
specific way.

ina

L.Rosasco
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In many applications the connectivity of neural networks is limited in a
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» Weights in the first few layers have smaller support and are
repeated- weight sha ring.
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In many applications the connectivity of neural networks is limited in a
specific way.

» Weights in the first few layers have smaller support and are
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Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8x8 8@dxd 20@1x1

o Nili==

F—

Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

» Weights in the first few layers have smaller support and are
repeated- weight sha ring.

» Subsampling (pooling) is interleaved with standard neural nets
computations.

The obtained architectures are called convolutional neural networks...s.



Convolutional layers

Consider the composite representation

d:RP 5 F, d=0o0W,
with
> representation by filtering W : RP — F/,
> representation by pooling o : 7/ — F.
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Convolutional layers

Consider the composite representation

®:RP - F, ®=00W,
with
> representation by filtering W : RP — 7/,
> representation by pooling o : 7/ — F.

Note: o, W are more complex than in standard NN.
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Convolution and filtering

The matrix W is made of blocks
W - (th, . '7GtT)

each block is a convolution matrix obtained transforming a vector
(template) ¢, e.g.

Gt = (gltaagNt)

e.g.

For all z € RP,
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Convolution and filtering

The matrix W is made of blocks
W == (th, . ’7GtT)

then
Wz =(t; xx),...,(tr xx)

Note: Compare to standard neural nets where

T T
We=tiz,... trx
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Pooling

The pooling map aggregates (pools) the values corresponding to the
same transformed template

rTxt = nglt, .. .,:UTgNt,

and can be seen as a form of subsampling.
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Pooling functions

Given a template ¢, let
B=o(xxt)=(o(z'git),...,o(x" gnt)).

for some non-linearity o, e.g. o(-) = |+.
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Pooling functions

Given a template ¢, let
B=o(xxt)=(o(z'git),...,o(x" gnt)).
for some non-linearity o, e.g. o(-) = |+.
Examples of pooling
» max pooling

J
max (7,
j=1,..,N

> average pooling
1 e
N2
j=1

> (, pooling

=

N .
181, = | D 1871
j=1
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Why pooling?

The intuition is that pooling can provide some form of robustness and
even invariance to the transformations.

Invariance & selectivity

» A good representation should be invariant to semantically
irrelevant transformations.

> Yet, it should be discriminative with respect to relevant
information (selective).
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Basic computations: simple & complex cells

(Hubel, Wiesel '62)

» Simple cells
T — nglt, .. ,:L‘TgNt

» Complex cells

zlgit...,x gyt — Z lz " gt
g
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Basic computations: convolutional networks

(Le Cun '88)

» Convolutional filters
T osTglt, .. ,ngNt

» Subsampling/pooling

e git...,x gyt — Z 2" gt
g
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Deep convolutional networks

Filtering

l

Pooling

|

!

Filtering Pooling k* T
Output
Input First Second Classifier e
Layer Layer
In practice:

» multiple convolution layers are stacked,
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Deep convolutional networks

Filtering

l

Pooling

|

Filtering Pooling \‘* !
) Output
Input First Second Classifier
Layer Layer

In practice:
» multiple convolution layers are stacked,

» pooling is not global, but over a subset of transformations
(receptive field),
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Deep convolutional networks

Filtering

l

Pooling

|

Filtering Pooling k‘* !
) Output
Input First Second Classifier
Layer Layer

In practice:
» multiple convolution layers are stacked,

» pooling is not global, but over a subset of transformations
(receptive field),

> the receptive fields size increases in higher layers.
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A biological motivation

Visual cortex

The processing in DCN has
analogies with computational
neuroscience models of the
information processing in the

visual cortex see [Poggio et al.

1.

Classification ﬁ’
units ‘Jg

V4/PIT &)
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Outline

Some Tricks of the Trade
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Which activation function?

= sigmoid
——thanh

4

——RelU

—softplus

» Biological motivation

» Rich function spaces

» Avoid vanishing gradient
» Fast gradient computation

RelLU: It has the last two properties! It seems to work best in practice!
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SGD is slow...

\ gradient descent

ITERATIONS

Accelerations
Momentum

v

» Nesterov's method
» Adam
» Adagrad
>

L.Rosasco



Mini-Batch SGD

gradient descent

ITERATIONS

> GD: use all points each iteration to compute gradient
» SGD: use one point each iteration to compute gradient
» Mini-Batch: use a mini-batch of points each iteration to compute
gradient
Why? Faster convergence/More stable behavior | Rossseo



Initialization: learning from scratch

Large-scale Datasets General Purpose GPUs

AlexNet
Krizhevsky
et al (2012)
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Initialization & fine tuning

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected  Connected

y, dog (0.01)
cat (0.04)
true boat (0.94)
0g(0) bird (0.02)
at (0) L
oat(1)

ird (0)
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Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected  Connected

Convolution Pooling

ytrue ~ 3 ug (0.05)
mug (0) L hone (0.95)
%ﬂhune (1) ] __D
fc, fc, fcN
6 —7 — B CNN(X) = V,req

FORWARD

BACKWARD M E(YyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8
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Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected  Connected

Convolution Pooling

0g (0.01)
Yirue ——l m ug (0.05)
(52 & (0.94) hone (0.95)
[mue (0) DW0.02)
%ﬂhune ) 4 fn) A
conv. fc, feN,fecN
2 6 7 8 -
> CNN(X) = Vg

FORWARD

BACKWARD min EVyruerYorea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfcN7 dfcN8
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Initialization & fine tuning

Output Predictions

0g (0.01)
( ug (0.05)
(0.94) hone (0.95)
bIWN0.02)

Convolution Pooling Fully Fully
Connected  Connected

Convolution Pooling

ytrue

mueg (0)
hone (1)

conv. fcNgfeN,fcN
2 67 =B CNN(X) = Ve

FORWARD

min E(YyyeYpred)
BACKWARD true ¥ pred
< l l l l l arg min E(w,, w,,...)

dE dE dE  dE dE
dconvl dconv2 dfcN6 dfcN7 dfcN8
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Initialization & fine tuning

Output Predictions

Convolution  Pooling Fully Fully
Connected  Connected

Convolution Pooling

0g (0.01)
ytrue = 1 q@% ug (0.05)
(52 & (0.94) hone (0.95)
[mue (0) DW0.02)
%mune () t1----o A
conv, fc, fc, fcNg
» CNN(X) = Yored
FORWARD )
BACKWARD min EVyruerYorea)
< l l l l l arg min E(w,, w,,...)
dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8
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Initialization & fine tuning

Fully Fully Output Predictions

Pooling Convolution Pooling
Connected  Connected

Convolution

98 (0.01)
ug (0.05)

ytrue 1
53 R (0.94) hone (0.55)
%‘f‘“’ o] DI0.02)
hone (1) ] (u] o
conv conv. fc, fc, fcN
1 2 6 7 1 -
X > CNN(X) = Ve
FORWARD
mMin E(VyryerYpred)
BACKWARD true’¥pred
< l l l l l arg min E(w, w,,...)
dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

» Learning layers from scratch/from pre-learned initialization

» Learning layers more/less aggressively using different step-sizes
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v

v

v

Training protocol(s)

Learning at different layers
— Initialization
— Learning rates

Mini-batch size

Further aspect: regularization!

— Weight constraints
— Drop-out

Batch normalization
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Wrapping up

» Unlabelled data and auto-encoders
» CNN: the power of weight sharing for learning
» Tips and tricks (fine tune!)
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Final remarks

Learning representations with deep-nets

Learning deep-nets with back-prop

CNN: the power of weight sharing for learning

More deep-nets: Inception, GAN, Recurrent net, LSTM, ...
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Final remarks

Learning representations with deep-nets

Learning deep-nets with back-prop

CNN: the power of weight sharing for learning

More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

But why do they work?! Gotta be that they are like the brain...
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