MLCC 2018
Deep Learning

Lorenzo Rosasco
UNIGE-MIT-IIT

What? Classification

Object classification

What's in this image?

Note: beyond vision: classify graphs, strings, networks, time-series. ..

L.Rosasco

What makes the problem hard?

> Viewpoint

Note: ldentification vs categorization. . .

L.Rosasco

Categorization: a learning approach

Training
mug mug
AP (R Y
N oY o
B]

— e -

remote remote remote
Test

L.Rosasco

Supervised learning

Given
(-T17y1)a ey (xnayn)

find f such that

Signf($new) = Ynew

» 2 € RP a vectorization of an image

» y = =1 a label (mug/remote)

L.Rosasco

Learning and data representation

Consider
flx) =w'®(x)

a two steps learning scheme is often considered

> supervised learning of w

> expert design or unsupervised learning of the data representation ®

L.Rosasco

Learning and data representation

Consider
flx) =w'®(x)

a two steps learning scheme is often considered

> supervised learning of w

> expert design or unsupervised learning of the data representation ®

L.Rosasco

Data representation

& :RP 5 RP

A mapping of data in a new format better suited for further processing

L.Rosasco

Data representation by design

Dictionaries of features
» Wavelet & friends.
» SIFT, HoG etc.

Kernels
;112
> Classic off the shelf: Gaussian K(z,z') = e=ll==2""

» Structured input: kernels on histograms, graphs etc.

L.Rosasco

In practice all is multi-layer!
(an old slide)

Data representation schemes e.g. vision-speech, involve multiple (/ayers).

Pipeline

Raw data are often processed:
» first computing some of low level features,
» then learning some mid level representation,
> ...

> finally using supervised learning.

These stages are often done separately:
» good way to exploit unlabelled data. ..

> but is it possible to design end-to-end learning systems?

L.Rosasco

In practice all is deep-learning!
(updated slide)

Data representation schemes e.g. vision-speech, involve deep learning.
Pipeline

> Design some wild- but “differentiable” hierarchical architecture.
» Proceed with end-to-end learning!!

Max Max
poaling paoling

Architecture (rather than feature) engineering

L.Rosasco

Road Map

Part |: Basics neural networks
» Neural networks definition

» Optimization +approximation and statistics

Part II: One step beyond
» Auto-encoders
» Convolutional neural networks

» Tips and tricks

L.Rosasco

Part |: Basic Neural Networks
‘ T

ooooooooo

Shallow nets

flx)=w"®(z), z— d(z)
Fixed

L.Rosasco

Shallow nets

flx)=w"®(z), z— d(z)
Fixed

Examples

» Dictionaries
®(z) = cos(B z) = (cos(B] x),... ,cos(ﬂ;—x))

with B = 1, ..., B, fixed frequencies.

L.Rosasco

Shallow nets

flx)=w"®(z), z— d(z)
Fixed

Examples
» Dictionaries
®(z) = cos(B z) = (cos(B] x),... ,cos(ﬂ;—x))

with B = 1, ..., B, fixed frequencies.

» Kernel methods
B(z) = (e 102l . e~lIBnal?)

with 81 = x1, ..., 8, = =, the input points.

L.Rosasco

Shallow nets (cont.)

Fixed
Empirical Risk Minimization (ERM)
min » (yi — w' ®(x;))?
=1

Note:
The function f depends linearly on w, the ERM problem is convex!

4K
AN
A0
BRI
SN
SR
(K Ul

(R X0
SRy

R
R
R

L.Rosasco

Interlude: optimization by Gradient Descent (GD)

Batch gradient descent

~

wt+1 = Wt — ’vaé’(wt)

where

so that .
VE(w) = =23 ®(x;) " (y; — w' &(x,))
i=1

» Constant step-size depending on the curvature (Hessian norm)

» It is a descent method

L.Rosasco

Gradient descent illustrated

J(w) Initial ! Gradient
we|ght "l/
I

Global cost minimum
JinlW)

-
>

L.Rosasco

Stochastic gradient descent (SGD)

Wip1 = wi + 27, (w1) " (ye — w D(ay))

Compare to

wepr =w+2y Y P(2:) " (4 — w] D(xs))
=1

» Decaying step-size v = 1/+/t

> Lower iteration cost

> It is not a descent method (SGD?)

» Multiple passes (epochs) over data needed

L.Rosasco

SGD vs GD

gradient descent

ITERATIONS

L.Rosasco

Summary so far

Given data (z1,91),--., (%n,yn) and a fixed representation ®

» Consider
flz) =w' ®(z)

» Find w by SGD

Wity = we 4 27D (zy) (e — w ' (2y))

Can we jointly learn ®7?

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d

Let dy = D and

Py :R¥-r s RE ¢=1,...,L

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d

Let dy = D and
Py :R¥-r s RE ¢=1,...,L

and in particular
(I)ZZUOW@, EZL...,L

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d

Let dy = D and
Py :R¥-r s RE ¢=1,...,L

and in particular
(I)ZZUOW@, EZL...,L

where
Wp:Rd-1 s R¥* ¢=1,...,L

linear/affine

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

d=Pro0---0Pyo0d

Let dy = D and
Py :R¥-r s RE ¢=1,...,L

and in particular
(I)ZZUOW@, EZL...,L

where
Wp:Rd-1 s R¥* ¢=1,...,L

linear/affine and o is a non linear map acting component-wise

c:R—R.

L.Rosasco

Deep neural nets

fla)=w'®L(x),

P =00l

(I)ngLO“-OEl

compositional representation

EL :(TOVVL

L.Rosasco

Deep neural nets

fx)=w"®(z), O, =0po0---00
compositional representation
61:001/)@71 EL:(TOLVL
ERM
min_ Z(yz —w (7))’
“)7(W7>.7 n i=1

L.Rosasco

Neural networks jargoon

bp(x) =W ...0(Wao(Wyix)))

» Each intermediate representation corresponds to a (hidden) layer

» The dimensionalities (dy), correspond to the number of hidden
units
» The non linearity o is called activation function

L.Rosasco

Neural networks & neurons

® 6
HL, TAM ANEURON

» Each neuron compute an inner product based on a column of a
weight matrix W

» The non-linearity o is the neuron activation function.

L.Rosasco

Deep neural networks

L.Rosasco

Activation functions

For o € R consider,
> sigmoid s(a) = 1/(1 + e)¢,
> hyperbolic tangent s(a) = (e* —e™®)/(e® + e~ %),
» RelLU s(a) = |a|+ (aka ramp, hinge),
> Softplus s(a) = log(1 + e®).

5_.
= sigmoid
=——=thanh
4_
——RelLU
=——=softplus
gl ——sofpus| S
2,
1,
0 ;/ 77777 ﬁ
5 0 5

L.Rosasco

Some questions

Foowe, (@) =w @y, (), Qw,, =o(Wr...0(Wao(Wix)))

We have our model but:
» Optimization: Can we train efficiently?
» Approximation: Are we dealing with rich models?

» Statistics: How hard is it generalize from finite data?

L.Rosasco

Neural networks function spaces

Consider the non linear space of functions of the form
fw,(We)e : RD — R,

Foowe, (@) =w @y, (), Py, =o(Wr...o(Wao(Wix)))

where w, (Wy), may vary.

Very little structure. .. but we can :
> train by gradient descent (next)
> get (some) approximation/statistical guarantees (later)

L.Rosasco

One layer neural networks

Consider only one hidden layer:

fow(@) =w’ ij TW]

and ERM again

L.Rosasco

Computations

Consider

glinf(w, W), E(w,W)= Z(yi — fwn (@i))?.

L.Rosasco

Computations

Consider

Problem is non-convex! (possibly smooth depending on o)

3 S
A XA I
N RN VAN
A RGN
NN iy RN

L.Rosasco

Back-propagation & GD

Empirical risk minimization,

An approximate minimizer is computed via the following gradient
method

o€
w;’-H = wi— g ‘(wt, W)
j
o€
Wittt wt 1 ppt
J.k - gk TVt 8”9‘,1@ (w))

where the step-size (7;); is often called learning rate.

L.Rosasco

Back-propagation & chain rule

Direct computations show that:

o€ i
S (W W) = =23 (i = faw) (@) b
J i=1
Aji
dE u -
g) = 72;(%4@,%(%)))% (w]) 2

N,k

Back-prop equations: 7 = Ajic;o’(w) x)

Using above equations, the updates are performed in two steps:

» Forward pass compute function values keeping weights fixed,

» Backward pass compute errors and propagate

» Hence the weights are updated.

L.Rosasco

W't

t41
Wj,k

SGD is typically preferred

Wi = Y2y — fowewy) (@) hje
Wi =72 = flwesa,w) (@e)))wjo’(

T
wjx

e

L.Rosasco

Non convexity and SGD

Starting pt.

Local minima

Global minima

L.Rosasco

Few remarks

» Optimization by gradient methods- typically SGD

» Online update rules are potentially biologically plausible- Hebbian

vV v.v vy

learning rules describing neuron plasticity
Multiple layers can be analogously considered
Multiple step-size per layers can be considered
Initialization is tricky- more later

NO convergence guarantees

More tricks later

L.Rosasco

Some questions

» What is the benefit of multiple layers?

» Why does stochastic gradient seem to work?

L.Rosasco

Wrapping up part |

» Learning classifier and representation
» From shallow to deep learning

» SGD and backpropagation

L.Rosasco

Coming up

» Autoencoders and unsupervised data?
» Convolutional neural networks

» Tricks and tips

L.Rosasco

Part |l

ONE STEP BEYOND...

L.Rosasco

Unsupervised learning with neural networks

» Because unlabeled data abound

» Because one could use obtained weight for initialize supervised
learning (pre-training)

L.Rosasco

Auto-encoders

z Q O O O O

W /
> A neural network with one input layer, one output layer and one
(or more) hidden layers connecting them.

Q

T

O O Q

» The output layer has equally many nodes as the input layer,
> It is trained to predict the input rather than some target output.

L.Rosasco

Auto-encoders (cont.)

An auto encoder with one hidden layer of k units, can be seen as a
representation-reconstruction pair:

®:RP - F.,, ®x)=0cWz), VreRP
with F, = R*, k < d and

U:F,—»RP, W(E)=c (W), VBE F.

L.Rosasco

Auto-encoders & dictionary learning

O(z) =0 (Wz), ¥(B)=0(W'P)

Reconstructive approaches have connections with so called energy
models [LeCun et al....]

Possible probabilistic/Bayesian interpretations/variations (e.g.
Boltzmann machine [Hinton et al....])

The above formulation is closely related to dictionary learning.

> The weights can be seen as dictionary atoms.

L.Rosasco

Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al '06]. ..

(P10T;1)o(DPyoWy) -0 (PyoWy)
——

Autoencoder

... with the potential of obtaining richer representations.

L.Rosasco

Are auto-encoders useful?

> Pre-training has not delivered as hoped: supervised training on big
data-sets is best...

» Still a lot of work on the topic: variational autoencoders, denoising
autoencoderes, sparse autoencoders...

L.Rosasco

Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8xE B@axd 20@1x1
| =

Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited
specific way.

ina

L.Rosasco

Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8x8 8@dxd 20@1x1
| =
Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

» Weights in the first few layers have smaller support and are
repeated- weight sha ring.

L.Rosasco

Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8x8 8@dxd 20@1x1
| =
Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

» Weights in the first few layers have smaller support and are
repeated- weight sha ring.

» Subsampling (pooling) is interleaved with standard neural nets
computations.

L.Rosasco

Beyond reconstruction

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 B@8x8 8@dxd 20@1x1

o Nili==

F—

Convolution Subsampling Convolution Subsampling Convolution

In many applications the connectivity of neural networks is limited in a
specific way.

» Weights in the first few layers have smaller support and are
repeated- weight sha ring.

» Subsampling (pooling) is interleaved with standard neural nets
computations.

The obtained architectures are called convolutional neural networks...s.

Convolutional layers

Consider the composite representation

d:RP 5 F, d=0o0W,
with
> representation by filtering W : RP — F/,
> representation by pooling o : 7/ — F.

L.Rosasco

Convolutional layers

Consider the composite representation

®:RP - F, ®=00W,
with
> representation by filtering W : RP — 7/,
> representation by pooling o : 7/ — F.

Note: o, W are more complex than in standard NN.

L.Rosasco

Convolution and filtering

The matrix W is made of blocks
W - (th, . '7GtT)

each block is a convolution matrix obtained transforming a vector
(template) ¢, e.g.

Gt = (gltaagNt)

e.g.

For all z € RP,

L.Rosasco

Convolution and filtering

The matrix W is made of blocks
W == (th, . ’7GtT)

then
Wz =(t; xx),...,(tr xx)

Note: Compare to standard neural nets where

T T
We=tiz,... trx

L.Rosasco

Pooling

The pooling map aggregates (pools) the values corresponding to the
same transformed template

rTxt = nglt, .. .,:UTgNt,

and can be seen as a form of subsampling.

L.Rosasco

Pooling functions

Given a template ¢, let
B=o(xxt)=(o(z'git),...,o(x" gnt)).

for some non-linearity o, e.g. o(-) = |+.

L.Rosasco

Pooling functions

Given a template ¢, let
B=o(xxt)=(o(z'git),...,o(x" gnt)).
for some non-linearity o, e.g. o(-) = |+.
Examples of pooling
» max pooling

J
max (7,
j=1,..,N

> average pooling
1 e
N2
j=1

> (, pooling

=

N .
181, = | D 1871
j=1

L.Rosasco

Why pooling?

The intuition is that pooling can provide some form of robustness and
even invariance to the transformations.

Invariance & selectivity

» A good representation should be invariant to semantically
irrelevant transformations.

> Yet, it should be discriminative with respect to relevant
information (selective).

L.Rosasco

Basic computations: simple & complex cells

(Hubel, Wiesel '62)

» Simple cells
T — nglt, .. ,:L‘TgNt

» Complex cells

zlgit...,x gyt — Z lz " gt
g

L.Rosasco

Basic computations: convolutional networks

(Le Cun '88)

» Convolutional filters
T osTglt, .. ,ngNt

» Subsampling/pooling

e git...,x gyt — Z 2" gt
g

L.Rosasco

Deep convolutional networks

Filtering

l

Pooling

|

!

Filtering Pooling k* T
Output
Input First Second Classifier e
Layer Layer
In practice:

» multiple convolution layers are stacked,

L.Rosasco

Deep convolutional networks

Filtering

l

Pooling

|

Filtering Pooling \‘* !
) Output
Input First Second Classifier
Layer Layer

In practice:
» multiple convolution layers are stacked,

» pooling is not global, but over a subset of transformations
(receptive field),

L.Rosasco

Deep convolutional networks

Filtering

l

Pooling

|

Filtering Pooling k‘* !
) Output
Input First Second Classifier
Layer Layer

In practice:
» multiple convolution layers are stacked,

» pooling is not global, but over a subset of transformations
(receptive field),

> the receptive fields size increases in higher layers.

L.Rosasco

A biological motivation

Visual cortex

The processing in DCN has
analogies with computational
neuroscience models of the
information processing in the

visual cortex see [Poggio et al.

1.

Classification ﬁ’
units ‘Jg

V4/PIT &)

L.Rosasco

Outline

Some Tricks of the Trade

L.Rosasco

Which activation function?

= sigmoid
——thanh

4

——RelU

—softplus

» Biological motivation

» Rich function spaces

» Avoid vanishing gradient
» Fast gradient computation

RelLU: It has the last two properties! It seems to work best in practice!

L.Rosasco

SGD is slow...

\ gradient descent

ITERATIONS

Accelerations
Momentum

v

» Nesterov's method
» Adam
» Adagrad
>

L.Rosasco

Mini-Batch SGD

gradient descent

ITERATIONS

> GD: use all points each iteration to compute gradient
» SGD: use one point each iteration to compute gradient
» Mini-Batch: use a mini-batch of points each iteration to compute
gradient
Why? Faster convergence/More stable behavior | Rossseo

Initialization: learning from scratch

Large-scale Datasets General Purpose GPUs

AlexNet
Krizhevsky
et al (2012)

L.Rosasco

Initialization & fine tuning

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

y, dog (0.01)
cat (0.04)
true boat (0.94)
0g(0) bird (0.02)
at (0) L
oat(1)

ird (0)

L.Rosasco

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

ytrue ~ 3 ug (0.05)
mug (0) L hone (0.95)
%ﬂhune (1)] __D
fc, fc, fcN
6 —7 — B CNN(X) = V,req

FORWARD

BACKWARD M E(YyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

L.Rosasco

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

0g (0.01)
Yirue ——l m ug (0.05)
(52 & (0.94) hone (0.95)
[mue (0) DW0.02)
%ﬂhune) 4 fn) A
conv. fc, feN,fecN
2 6 7 8 -
> CNN(X) = Vg

FORWARD

BACKWARD min EVyruerYorea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfcN7 dfcN8

L.Rosasco

Initialization & fine tuning

Output Predictions

0g (0.01)
(ug (0.05)
(0.94) hone (0.95)
bIWN0.02)

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

ytrue

mueg (0)
hone (1)

conv. fcNgfeN,fcN
2 67 =B CNN(X) = Ve

FORWARD

min E(YyyeYpred)
BACKWARD true ¥ pred
< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfcN6 dfcN7 dfcN8

L.Rosasco

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

0g (0.01)
ytrue = 1 q@% ug (0.05)
(52 & (0.94) hone (0.95)
[mue (0) DW0.02)
%mune () t1----o A
conv, fc, fc, fcNg
» CNN(X) = Yored
FORWARD)
BACKWARD min EVyruerYorea)
< l l l l l arg min E(w,, w,,...)
dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

L.Rosasco

Initialization & fine tuning

Fully Fully Output Predictions

Pooling Convolution Pooling
Connected Connected

Convolution

98 (0.01)
ug (0.05)

ytrue 1
53 R (0.94) hone (0.55)
%‘f‘“’ o] DI0.02)
hone (1)] (u] o
conv conv. fc, fc, fcN
1 2 6 7 1 -
X > CNN(X) = Ve
FORWARD
mMin E(VyryerYpred)
BACKWARD true’¥pred
< l l l l l arg min E(w, w,,...)
dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

» Learning layers from scratch/from pre-learned initialization

» Learning layers more/less aggressively using different step-sizes
L.Rosasco

v

v

v

v

Training protocol(s)

Learning at different layers
— Initialization
— Learning rates

Mini-batch size

Further aspect: regularization!

— Weight constraints
— Drop-out

Batch normalization

L.Rosasco

Wrapping up

» Unlabelled data and auto-encoders
» CNN: the power of weight sharing for learning
» Tips and tricks (fine tune!)

L.Rosasco

Final remarks

Learning representations with deep-nets

Learning deep-nets with back-prop

CNN: the power of weight sharing for learning

More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

L.Rosasco

Final remarks

Learning representations with deep-nets

Learning deep-nets with back-prop

CNN: the power of weight sharing for learning

More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

But why do they work?! Gotta be that they are like the brain...

L.Rosasco

	Some Tricks of the Trade

