
MLCC 2018
Deep Learning

Lorenzo Rosasco
UNIGE-MIT-IIT

What? Classification

Object classification

What’s in this image?

Note: beyond vision: classify graphs, strings, networks, time-series. . .

L.Rosasco

What makes the problem hard?

◮ Viewpoint

◮ Semantic variability

⚠

Note: Identification vs categorization. . .
L.Rosasco

Categorization: a learning approach

Training

mug mug mug

remote remote remote

…

…

Test
mug mug remote

remote mug remote

L.Rosasco

Supervised learning

Given
(x1, y1), . . . , (xn, yn)

find f such that
signf(xnew) = ynew

◮ x ∈ R
D a vectorization of an image

◮ y = ±1 a label (mug/remote)

L.Rosasco

Learning and data representation

Consider
f(x) = w⊤Φ(x)

a two steps learning scheme is often considered

◮ supervised learning of w

◮ expert design or unsupervised learning of the data representation Φ

L.Rosasco

Learning and data representation

Consider
f(x) = w⊤Φ(x)

a two steps learning scheme is often considered

◮ supervised learning of w

◮ expert design or unsupervised learning of the data representation Φ

L.Rosasco

Data representation

Φ : RD → R
p

A mapping of data in a new format better suited for further processing

L.Rosasco

Data representation by design

Dictionaries of features

◮ Wavelet & friends.

◮ SIFT, HoG etc.

Kernels

◮ Classic off the shelf: Gaussian K(x, x′) = e−‖x−x′‖2
γ

◮ Structured input: kernels on histograms, graphs etc.

L.Rosasco

In practice all is multi-layer!

(an old slide)

Data representation schemes e.g. vision-speech, involve multiple (layers).

Pipeline
Raw data are often processed:

◮ first computing some of low level features,

◮ then learning some mid level representation,

◮ . . .

◮ finally using supervised learning.

These stages are often done separately:

◮ good way to exploit unlabelled data. . .

◮ but is it possible to design end-to-end learning systems?

L.Rosasco

In practice all is deep-learning!

(updated slide)

Data representation schemes e.g. vision-speech, involve deep learning.

Pipeline

◮ Design some wild- but “differentiable” hierarchical architecture.

◮ Proceed with end-to-end learning!!

Architecture (rather than feature) engineering

L.Rosasco

Road Map

Part I: Basics neural networks

◮ Neural networks definition

◮ Optimization +approximation and statistics

Part II: One step beyond

◮ Auto-encoders

◮ Convolutional neural networks

◮ Tips and tricks

L.Rosasco

Part I: Basic Neural Networks

L.Rosasco

Shallow nets

f(x) = w⊤Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

.

L.Rosasco

Shallow nets

f(x) = w⊤Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

.

Examples

◮ Dictionaries

Φ(x) = cos(B⊤x) = (cos(β⊤
1 x), . . . , cos(β⊤

p x))

with B = β1, . . . , βp fixed frequencies.

L.Rosasco

Shallow nets

f(x) = w⊤Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

.

Examples

◮ Dictionaries

Φ(x) = cos(B⊤x) = (cos(β⊤
1 x), . . . , cos(β⊤

p x))

with B = β1, . . . , βp fixed frequencies.

◮ Kernel methods

Φ(x) = (e−‖β1−x‖2

, . . . , e−‖βn−x‖2

)

with β1 = x1, . . . , βn = xn the input points.
L.Rosasco

Shallow nets (cont.)

f(x) = w⊤Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

Empirical Risk Minimization (ERM)

min
w

n∑

i=1

(yi − w⊤Φ(xi))
2

Note:
The function f depends linearly on w, the ERM problem is convex!

L.Rosasco

Interlude: optimization by Gradient Descent (GD)

Batch gradient descent

wt+1 = wt − γ∇wÊ(wt)

where

Ê(w) =
n∑

i=1

(yi − w⊤Φ(xi))
2

so that

∇wÊ(w) = −2
n∑

i=1

Φ(xi)
⊤(yi − w⊤Φ(xi))

◮ Constant step-size depending on the curvature (Hessian norm)

◮ It is a descent method

L.Rosasco

Gradient descent illustrated

L.Rosasco

Stochastic gradient descent (SGD)

wt+1 = wt + 2γtΦ(xt)
⊤(yt − w⊤

t Φ(xt))

Compare to

wt+1 = wt + 2γ

n∑

i=1

Φ(xi)
⊤(yi − w⊤

t Φ(xi))

◮ Decaying step-size γ = 1/
√
t

◮ Lower iteration cost

◮ It is not a descent method (SGD?)

◮ Multiple passes (epochs) over data needed

L.Rosasco

SGD vs GD

L.Rosasco

Summary so far

Given data (x1, y1), . . . , (xn, yn) and a fixed representation Φ

◮ Consider
f(x) = w⊤Φ(x)

◮ Find w by SGD

wt+1 = wt + 2γtΦ(xt)
⊤(yt − w⊤Φ(xt))

Can we jointly learn Φ?

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

Let d0 = D and

Φℓ : R
dℓ−1 → R

dℓ , ℓ = 1, . . . , L

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

Let d0 = D and

Φℓ : R
dℓ−1 → R

dℓ , ℓ = 1, . . . , L

and in particular
Φℓ = σ ◦Wℓ, ℓ = 1, . . . , L

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

Let d0 = D and

Φℓ : R
dℓ−1 → R

dℓ , ℓ = 1, . . . , L

and in particular
Φℓ = σ ◦Wℓ, ℓ = 1, . . . , L

where
Wℓ : R

dℓ−1 → R
dℓ , ℓ = 1, . . . , L

linear/affine

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

Let d0 = D and

Φℓ : R
dℓ−1 → R

dℓ , ℓ = 1, . . . , L

and in particular
Φℓ = σ ◦Wℓ, ℓ = 1, . . . , L

where
Wℓ : R

dℓ−1 → R
dℓ , ℓ = 1, . . . , L

linear/affine and σ is a non linear map acting component-wise

σ : R → R.

L.Rosasco

Deep neural nets

f(x) = w⊤ΦL(x), ΦL = ΦL ◦ · · · ◦ Φ1︸ ︷︷ ︸
compositional representation

Φ1 = σ ◦W1 . . . ΦL = σ ◦WL

L.Rosasco

Deep neural nets

f(x) = w⊤ΦL(x), ΦL = ΦL ◦ · · · ◦ Φ1︸ ︷︷ ︸
compositional representation

Φ1 = σ ◦W1 . . . ΦL = σ ◦WL

ERM

min
w,(Wj)j

1

n

n∑

i=1

(yi − w⊤ΦL(xi))
2

L.Rosasco

Neural networks jargoon

ΦL(x) = σ(WL . . . σ(W2σ(W1x)))

◮ Each intermediate representation corresponds to a (hidden) layer

◮ The dimensionalities (dℓ)ℓ correspond to the number of hidden
units

◮ The non linearity σ is called activation function

L.Rosasco

Neural networks & neurons

x3x2x1

W 1
j

W 2
j

W 3
j

W>
j x =

3X

t=1

W t
jx

t

hi, i am a neuron

◮ Each neuron compute an inner product based on a column of a
weight matrix W

◮ The non-linearity σ is the neuron activation function.

L.Rosasco

Deep neural networks

x3x2x1

W 1
j

W 2
j

W 3
j

W>
j x =

3X

t=1

W t
jx

t

L.Rosasco

Activation functions

For α ∈ R consider,

◮ sigmoid s(α) = 1/(1 + e−α)t,

◮ hyperbolic tangent s(α) = (eα − e−α)/(eα + e−α),

◮ ReLU s(α) = |α|+ (aka ramp, hinge),

◮ Softplus s(α) = log(1 + eα).

L.Rosasco

Some questions

fw,(Wℓ)ℓ(x) = w⊤Φ(Wℓ)ℓ(x), Φ(Wℓ)ℓ = σ(WL . . . σ(W2σ(W1x)))

We have our model but:

◮ Optimization: Can we train efficiently?

◮ Approximation: Are we dealing with rich models?

◮ Statistics: How hard is it generalize from finite data?

L.Rosasco

Neural networks function spaces

Consider the non linear space of functions of the form
fw,(Wℓ)ℓ : R

D → R,

fw,(Wℓ)ℓ(x) = w⊤Φ(Wℓ)ℓ(x), Φ(Wℓ)ℓ = σ(WL . . . σ(W2σ(W1x)))

where w, (Wℓ)ℓ may vary.

Very little structure. . . but we can :

◮ train by gradient descent (next)

◮ get (some) approximation/statistical guarantees (later)

L.Rosasco

One layer neural networks

Consider only one hidden layer:

fw,W (x) = w⊤σ(Wx) =

u∑

j=1

wjσ
(
x⊤W j

)

and ERM again
n∑

i=1

(yi − fw,W (xi))
2,

L.Rosasco

Computations

Consider

min
w,W

Ê(w,W), Ê(w,W) =

n∑

i=1

(yi − f(w,W)(xi)))
2.

L.Rosasco

Computations

Consider

min
w,W

Ê(w,W), Ê(w,W) =

n∑

i=1

(yi − f(w,W)(xi)))
2.

Problem is non-convex! (possibly smooth depending on σ)

L.Rosasco

Back-propagation & GD

Empirical risk minimization,

min
w,W

Ê(w,W), Ê(w,W) =

n∑

i=1

(yi − f(w,W)(xi)))
2.

An approximate minimizer is computed via the following gradient
method

wt+1
j = wt

j − γt
∂Ê
∂wj

(wt,W t)

W t+1
j,k = W t

j,k − γt
∂Ê

∂Wj,k

(wt+1,W t)

where the step-size (γt)t is often called learning rate.

L.Rosasco

Back-propagation & chain rule

Direct computations show that:

∂Ê
∂wj

(w,W) = −2

n∑

i=1

(yi − f(w,W)(xi)))︸ ︷︷ ︸
∆j,i

hj,i

∂Ê
∂Wj,k

(w,W) = −2

n∑

i=1

(yi − f(w,W)(xi)))wjσ
′(w⊤

j x)︸ ︷︷ ︸
ηi,k

xk
i

Back-prop equations: ηi,k = ∆j,icjσ
′(w⊤

j x)

Using above equations, the updates are performed in two steps:

◮ Forward pass compute function values keeping weights fixed,

◮ Backward pass compute errors and propagate

◮ Hence the weights are updated.

L.Rosasco

SGD is typically preferred

wt+1
j = wt

j − γt2(yt − f(wt,Wt)(xt)))hj,t

W t+1
j,k = W t

j,k − γt2(yt − f(wt+1,Wt)(xt)))wjσ
′(w⊤

j x)x
k
t

L.Rosasco

Non convexity and SGD

L.Rosasco

Few remarks

◮ Optimization by gradient methods– typically SGD

◮ Online update rules are potentially biologically plausible– Hebbian
learning rules describing neuron plasticity

◮ Multiple layers can be analogously considered

◮ Multiple step-size per layers can be considered

◮ Initialization is tricky- more later

◮ NO convergence guarantees

◮ More tricks later

L.Rosasco

Some questions

◮ What is the benefit of multiple layers?

◮ Why does stochastic gradient seem to work?

L.Rosasco

Wrapping up part I

◮ Learning classifier and representation

◮ From shallow to deep learning

◮ SGD and backpropagation

L.Rosasco

Coming up

◮ Autoencoders and unsupervised data?

◮ Convolutional neural networks

◮ Tricks and tips

L.Rosasco

Part II:

L.Rosasco

Unsupervised learning with neural networks

◮ Because unlabeled data abound

◮ Because one could use obtained weight for initialize supervised
learning (pre-training)

L.Rosasco

Auto-encoders

W

x

x

◮ A neural network with one input layer, one output layer and one
(or more) hidden layers connecting them.

◮ The output layer has equally many nodes as the input layer,

◮ It is trained to predict the input rather than some target output.

L.Rosasco

Auto-encoders (cont.)

An auto encoder with one hidden layer of k units, can be seen as a
representation-reconstruction pair:

Φ : RD → Fk, Φ(x) = σ (Wx) , ∀x ∈ R
D

with Fk = R
k, k < d and

Ψ : Fk → R
D, Ψ(β) = σ (W ′β) , ∀β ∈ Fk.

L.Rosasco

Auto-encoders & dictionary learning

Φ(x) = σ (Wx) , Ψ(β) = σ (W ′β)

◮ Reconstructive approaches have connections with so called energy
models [LeCun et al.. . .]

◮ Possible probabilistic/Bayesian interpretations/variations (e.g.
Boltzmann machine [Hinton et al.. . .])

◮ The above formulation is closely related to dictionary learning.

◮ The weights can be seen as dictionary atoms.

L.Rosasco

Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al ’06]. . .

(Φ1 ◦Ψ1)︸ ︷︷ ︸
Autoencoder

◦(Φ2 ◦Ψ2) · · · ◦ (Φℓ ◦Ψℓ)

. . . with the potential of obtaining richer representations.

L.Rosasco

Are auto-encoders useful?

◮ Pre-training has not delivered as hoped: supervised training on big
data-sets is best...

◮ Still a lot of work on the topic: variational autoencoders, denoising
autoencoderes, sparse autoencoders...

L.Rosasco

Beyond reconstruction

In many applications the connectivity of neural networks is limited in a
specific way.

L.Rosasco

Beyond reconstruction

In many applications the connectivity of neural networks is limited in a
specific way.

◮ Weights in the first few layers have smaller support and are
repeated- weight sha ring.

L.Rosasco

Beyond reconstruction

In many applications the connectivity of neural networks is limited in a
specific way.

◮ Weights in the first few layers have smaller support and are
repeated- weight sha ring.

◮ Subsampling (pooling) is interleaved with standard neural nets
computations.

L.Rosasco

Beyond reconstruction

In many applications the connectivity of neural networks is limited in a
specific way.

◮ Weights in the first few layers have smaller support and are
repeated- weight sha ring.

◮ Subsampling (pooling) is interleaved with standard neural nets
computations.

The obtained architectures are called convolutional neural networks.L.Rosasco

Convolutional layers

Consider the composite representation

Φ : RD → F , Φ = σ ◦W,

with

◮ representation by filtering W : RD → F ′,

◮ representation by pooling σ : F ′ → F .

L.Rosasco

Convolutional layers

Consider the composite representation

Φ : RD → F , Φ = σ ◦W,

with

◮ representation by filtering W : RD → F ′,

◮ representation by pooling σ : F ′ → F .

Note: σ,W are more complex than in standard NN.

L.Rosasco

Convolution and filtering

The matrix W is made of blocks

W = (Gt1 , . . . , GtT)

each block is a convolution matrix obtained transforming a vector
(template) t, e.g.

Gt = (g1t, . . . , gN t).

e.g.

Gt =

t1 t2 t3 . . . td

td t1 t2 . . . td−1

td−1 td t1 . . . td−2

. .
t2 t3 t4 . . . t1

For all x ∈ R
D,

W (x)(j, i) = x⊤gitj

L.Rosasco

Convolution and filtering

The matrix W is made of blocks

W = (Gt1 , . . . , GtT)

then
Wx = (t1 ⋆ x), . . . , (tT ⋆ x)

Note: Compare to standard neural nets where

Wx = t⊤1 x, . . . , t
⊤
T x

L.Rosasco

Pooling

The pooling map aggregates (pools) the values corresponding to the
same transformed template

x ⋆ t = x⊤g1t, . . . , x
⊤gN t,

and can be seen as a form of subsampling.

L.Rosasco

Pooling functions

Given a template t, let

β = σ(x ⋆ t) =
(
σ(x⊤g1t), . . . , σ(x

⊤gN t)
)
.

for some non-linearity σ, e.g. σ(·) = | · |+.

L.Rosasco

Pooling functions

Given a template t, let

β = σ(x ⋆ t) =
(
σ(x⊤g1t), . . . , σ(x

⊤gN t)
)
.

for some non-linearity σ, e.g. σ(·) = | · |+.
Examples of pooling

◮ max pooling
max

j=1,...,N
βj ,

◮ average pooling

1

N

N∑

j=1

βj ,

◮ ℓp pooling

‖β‖p =

N∑

j=1

|βj |p

1
p

.

L.Rosasco

Why pooling?

The intuition is that pooling can provide some form of robustness and
even invariance to the transformations.

Invariance & selectivity

◮ A good representation should be invariant to semantically
irrelevant transformations.

◮ Yet, it should be discriminative with respect to relevant
information (selective).

L.Rosasco

Basic computations: simple & complex cells

(Hubel, Wiesel ’62)

◮ Simple cells
x 7→ x⊤g1t, . . . , x

⊤gN t

◮ Complex cells

x⊤g1t . . . , x
⊤gN t 7→

∑

g

|x⊤gt|+

L.Rosasco

Basic computations: convolutional networks

(Le Cun ’88)

◮ Convolutional filters

x 7→ x⊤g1t, . . . , x
⊤gN t

◮ Subsampling/pooling

x⊤g1t . . . , x
⊤gN t 7→

∑

g

|x⊤gt|+

L.Rosasco

Deep convolutional networks

Filtering Pooling

Filtering
Pooling

First
Layer

Second
Layer

Input
Output

Classifier

In practice:

◮ multiple convolution layers are stacked,

L.Rosasco

Deep convolutional networks

Filtering Pooling

Filtering
Pooling

First
Layer

Second
Layer

Input
Output

Classifier

In practice:

◮ multiple convolution layers are stacked,

◮ pooling is not global, but over a subset of transformations
(receptive field),

L.Rosasco

Deep convolutional networks

Filtering Pooling

Filtering
Pooling

First
Layer

Second
Layer

Input
Output

Classifier

In practice:

◮ multiple convolution layers are stacked,

◮ pooling is not global, but over a subset of transformations
(receptive field),

◮ the receptive fields size increases in higher layers.

L.Rosasco

A biological motivation

Visual cortex
The processing in DCN has
analogies with computational
neuroscience models of the
information processing in the
visual cortex see [Poggio et al.
. . .].

Classification
units

PIT/AIT

V4/PIT

V2/V4

V1/V2

L.Rosasco

Outline

Some Tricks of the Trade

L.Rosasco

Which activation function?

◮ Biological motivation

◮ Rich function spaces

◮ Avoid vanishing gradient

◮ Fast gradient computation

ReLU: It has the last two properties! It seems to work best in practice!
L.Rosasco

SGD is slow...

Accelerations

◮ Momentum

◮ Nesterov’s method

◮ Adam

◮ Adagrad

◮ . . .
L.Rosasco

Mini-Batch SGD

◮ GD: use all points each iteration to compute gradient

◮ SGD: use one point each iteration to compute gradient

◮ Mini-Batch: use a mini-batch of points each iteration to compute
gradient

Why? Faster convergence/More stable behavior
L.Rosasco

Initialization: learning from scratch

Large-scale Datasets General Purpose GPUs

AlexNet

Krizhevsky

et al (2012)

L.Rosasco

Initialization & fine tuning

dog(0)

cat	(0)
boat(1)

bird	(0)

ytrue

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fcN

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fcN

6
fcN

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

◮ Learning layers from scratch/from pre-learned initialization

◮ Learning layers more/less aggressively using different step-sizes
L.Rosasco

Training protocol(s)

◮ Learning at different layers

– Initialization

– Learning rates

◮ Mini-batch size

◮ Further aspect: regularization!

– Weight constraints

– Drop-out

◮ Batch normalization

◮ . . .

L.Rosasco

Wrapping up

◮ Unlabelled data and auto-encoders

◮ CNN: the power of weight sharing for learning

◮ Tips and tricks (fine tune!)

L.Rosasco

Final remarks

◮ Learning representations with deep-nets

◮ Learning deep-nets with back-prop

◮ CNN: the power of weight sharing for learning

◮ More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

L.Rosasco

Final remarks

◮ Learning representations with deep-nets

◮ Learning deep-nets with back-prop

◮ CNN: the power of weight sharing for learning

◮ More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

But why do they work?! Gotta be that they are like the brain...

L.Rosasco

	Some Tricks of the Trade

