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About this class

We will consider an unsupervised setting, and in particular the problem of
clustering unlabeled data into “coherent” groups.
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supervised learning

I ”Learning with a teacher”

I Data set S = {(x1, y1), . . . , (xn, yn)} with xi ∈ Rd and yi ∈ R
I X̂ = (x1, . . . , xn)

> ∈ Rn×d and ŷ = (y1, . . . , yn)
>.
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Unsupervised learning

I ”Learning without a teacher”

I Data set S = {x1, . . . , xn} with xi ∈ Rd
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Unsupervised learning problems

I Dimensionality reduction

I Clustering

I Density estimation

I Learning association rules

I Learning adaptive data representations

I ...
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Supervised vs unsupervised methods

I In supervised learning we have a measure of success — based on a
loss function and on a model selection procedure e.g., cross
validation

I In unsupervised learning we don’t !

– hence many heuristics and the proliferation of many algorithms
difficult to evaluate — lack of theoretical grounds
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Clustering

I Clustering is a widely used technique for data analysis, with
applications ranging from statistics, computer science, biology, social
sciences....

I Goal:
Grouping/segmenting a collection of objects into subsets or clusters.
(Possibly also) arrange clusters into a natural hierarchy
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Clustering examples
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Clustering algorithms

I Combinatorial algorithms - directly from data {xi}ni=1 + some
notion of similarity or dissimilarity

I Mixture models - based on some assumption on the underlying
probability distribution
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Combinatorial clustering

I We assume some knowledge on the number of clusters K ≤ n.
Goal: associate a cluster label k = {1, . . . ,K} with each datum, by
defining an encoder C s.t.

k = C(xi)

I We look for an encoder C∗ that achieves the goal of clustering data,
according to some specific requirement of the algorithm and based
on data pairs dissimilarities
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Combinatorial clustering

I Criterion: assign to the same cluster similar/close data

I We may start from the following ”loss” or energy function (within
class):

W (C) = 1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

d(xi, xi′)

I C∗ = argminW (C)
I Unfeasible in practice!

S(N,K) =
1

K!

K∑
k=1

(−1)K−k
(
K

k

)
kn

and notice that S(10, 4) ∼ 34K while S(19, 4) ∼ 1010
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K-means algorithm

It refers specifically to the Euclidean distance.

I initialize cluster centroids mk k = 1, . . . ,K at random

I repeat until convergence

1. assign data to centroids C(xi) = argmin1≤k≤K ||xi −mk||2
2. update centroids
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K-means functional

K-means corresponds to minimizing the following function

J(C,m) =

K∑
k=1

∑
C(i)=k

||xi −mk||2

The algorithm is an alternating optimization procedure, with convergence
guarantees in practice (no rates).

The function J is not convex, thus K-means is not guaranteed to find a
global minimum.

Computational cost

1. data assignment O(Kn)

2. cluster centers updates O(n)
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K-means
Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 14
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FIGURE 14.6. Successive iterations of the K-means
clustering algorithm for the simulated data of Fig-
ure 14.4.

Figure from Hastie, Tibshirani, Friedman
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Example Vector Quantization

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 14

FIGURE 14.9. Sir Ronald A. Fisher (1890 − 1962)
was one of the founders of modern day statistics, to
whom we owe maximum-likelihood, sufficiency, and
many other fundamental concepts. The image on the
left is a 1024×1024 grayscale image at 8 bits per pixel.
The center image is the result of 2 × 2 block VQ, us-
ing 200 code vectors, with a compression rate of 1.9
bits/pixel. The right image uses only four code vectors,
with a compression rate of 0.50 bits/pixel

Figure from Hastie, Tibshirani, Friedman
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Spectral clustering - similarity graph

I A set of unlabeled data {xi}ni=1 and some notion of similarity
between data pairs sij

I We may represent them as a similarity graph G = (V,E)

I Clustering can be seen as a graph partitioning problem
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Spectral clustering - graph notation

G = (V,E) undirected graph

I V : data correspond to the vertices

I E : Weighted adjacency matrix W = (wij)
n
i,j=1 with wij ≥ 0.

W is symmetric wij = wji, as G is undirected.

I Degree of a vertex: di =
∑n

j=1 wij

Degree matrix: D = diag(di)

I Sub-graphs:
A,B ⊂ V then W (A,B) =

∑
i∈A,j∈B wij

Subgraph size:

– |A| number of vertices
– vol(A) =

∑
i∈A di
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Spectral clustering - how to build the graph

We use the available pairwise similarities sij
I ε-neighbourhood graph: connect vertices whose similarity is larger

than ε

I KNN graph: connect vertex vi to its K neighbours. Not symmetric!

I fully connected graph: sij = exp(−d2ij/2σ2)
d is the Euclidean distance, σ ≥ 0 controls the width of a
neighborhood
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Spectral clustering - how to build the graph

I n can be very large, it would be preferable if W was sparse

I In general it is better some notion of locality

wij =

{
sij if j is a KNN of i
0 otherwise

MLCC 2017 - class 10 21



Spectral clustering - graph Laplacians

Unnormalized graph Laplacian: L = D −W
Properties:

I For all f ∈ Rn

f>Lf =
1

2

n∑
ij=1

wij(fi − fj)2

f>Lf = f>Df − f>Wf

=
∑
i

dif
2
i −

∑
i,j

fifjwij

=
1

2

∑
i

(
∑
j

wij)f
2
i − 2

∑
ij

fifjwij +
∑
j

(
∑
i

wij)f
2
j

 =

=
1

2

∑
ij

wij(fi − fj)2
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Spectral clustering - graph Laplacians

Unnormalized graph Laplacian: L = D −W
I For each vector f ∈ Rn

f>Lf =
1

2

n∑
ij=1

wij(fi − fj)2

The graph Laplacian measures the variation of f on the graph
(f>Lf small if close points have close function values fi)

I L is symmetric and positive semi-definite

I The smallest eigenvalue of L is 0 and its corresponding eigenvector
is a vector of ones

I L has N non negative real-valued eigenvalues
0 = λ1 ≤ λ2 ≤ . . . ≤ λN

Laplacian and clustering: the multiplicity k of λ0 = 0 equals the
number of connected components in the graph
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Spectral clustering - graph Laplacians

Unnormalized graph Laplacian:

L = D −W

Normalized graph Laplacians:

Ln1 = D−1/2LD−1/2 = I −D−1/2WD−1/2

Ln2 = D−1L = I −D−1W
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A spectral clustering algorithm

I Graph Laplacian

– compute the Unnormalized Graph Laplacian L (unnormalized
algorithm)

– compute a Normalized Graph Laplacian Ln1 or Ln2 (normalized
algorithm)

I compute the first k eigenvectors of the Laplacian (k number of
clusters to compute)

I let Uk ∈ Rn×k be the matrix containing the k eigenvectors as
columns

I yj ∈ Rk be the vector obtained by the j-th row of Uk j = 1 . . . n.
Apply k-means to {yj}
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A spectral clustering algorithm

Computational cost

I Eigendecomposition O(n3)

I It may be enough to compute the first k eigenvalues/eigenvectors.
There are algorithms for this
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Example

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 14
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Spectral Clustering

FIGURE 14.29. Toy example illustrating spectral
clustering. Data in top left are 450 points falling in
three concentric clusters of 150 points each. The points
are uniformly distributed in angle, with radius 1, 2.8
and 5 in the three groups, and Gaussian noise with
standard deviation 0.25 added to each point. Using a
k = 10 nearest-neighbor similarity graph, the eigen-
vector corresponding to the second and third smallest

Figure from Hastie, Tibshirani, Friedman
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The number of clusters

eigengap heuristic

Figure from Von Luxburg tutorial
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Semi-supervised learning

Laplacian-based regularization algorithms (Belkin et al. 04)

Set of labeled examples: {(xi, yi)}ni=1

Set of unlabeled examples: {(xj)}n+u
j=n+1

f∗ = argmin
f∈H

1

n

n∑
i=1

`(f(xi), yi) + λA‖f‖2 +
λI
u2
fTLf
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Wrapping up

In this class we introduced the concept of data clustering and sketched
some of the best known algorithms

Ulrike Von Luxburg - A tutorial on Spectral Clustering
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