MLCC 2017 - Clustering

Lorenzo Rosasco UNIGE-MIT-IIT

June 30, 2017

About this class

We will consider an *unsupervised setting*, and in particular the problem of clustering unlabeled data into "coherent" groups.

supervised learning

- \blacktriangleright "Learning with a teacher"
- ► Data set $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ $\blacktriangleright \ \hat{X} = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times d}$ and $\hat{y} = (y_1, \ldots, y_n)^\top$.

supervised learning

- \blacktriangleright "Learning with a teacher"
- ► Data set $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ $\blacktriangleright \ \hat{X} = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times d}$ and $\hat{y} = (y_1, \ldots, y_n)^\top$.

Unsupervised learning

 \blacktriangleright "Learning without a teacher"

► Data set
$$
S = \{x_1, \ldots, x_n\}
$$
 with $x_i \in \mathbb{R}^d$

Unsupervised learning

 \blacktriangleright "Learning without a teacher"

► Data set
$$
S = \{x_1, \ldots, x_n\}
$$
 with $x_i \in \mathbb{R}^d$

Unsupervised learning problems

- \blacktriangleright Dimensionality reduction
- \blacktriangleright Clustering
- \blacktriangleright Density estimation
- \blacktriangleright Learning association rules
- \blacktriangleright Learning adaptive data representations

 \blacktriangleright ...

Supervised vs unsupervised methods

- \triangleright In supervised learning we have a measure of success $-$ based on a loss function and on a model selection procedure e.g., cross validation
- \blacktriangleright In unsupervised learning we don't !
	- hence many heuristics and the proliferation of many algorithms difficult to evaluate — lack of theoretical grounds

Clustering

In Clustering is a widely used technique for data analysis, with applications ranging from statistics, computer science, biology, social sciences....

\blacktriangleright Goal:

Grouping/segmenting a collection of objects into subsets or clusters. (Possibly also) arrange clusters into a natural hierarchy

Clustering examples

Michael B. Eisen et al. PNAS 1998;95:14863-14868

Clustering algorithms

- \blacktriangleright Combinatorial algorithms directly from data $\{x_i\}_{i=1}^n$ + some notion of similarity or dissimilarity
- \triangleright Mixture models based on some assumption on the underlying probability distribution

Combinatorial clustering

 \blacktriangleright We assume some knowledge on the number of clusters $K \leq n$. Goal: associate a cluster label $k = \{1, ..., K\}$ with each datum, by defining an encoder C s.t.

$$
k = \mathcal{C}(x_i)
$$

► We look for an encoder C^* that achieves the goal of clustering data, according to some specific requirement of the algorithm and based on data pairs dissimilarities

Combinatorial clustering

- \triangleright Criterion: assign to the same cluster similar/close data
- \triangleright We may start from the following "loss" or energy function (within class):

$$
W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} d(x_i, x_{i'})
$$

- $\blacktriangleright \mathcal{C}^* = \arg \min W(\mathcal{C})$
- \blacktriangleright Unfeasible in practice!

$$
S(N, K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} \binom{K}{k} k^n
$$

and notice that $S(10, 4) \sim 34K$ while $S(19, 4) \sim 10^{10}$

K-means algorithm

It refers specifically to the Euclidean distance.

- initialize cluster centroids m_k $k = 1, ..., K$ at random
- \blacktriangleright repeat until convergence
	- 1. assign data to centroids $C(x_i) = \arg \min_{1 \le k \le K} ||x_i m_k||^2$
	- 2. update centroids

K-means functional

K-means corresponds to minimizing the following function

$$
J(C, m) = \sum_{k=1}^{K} \sum_{\mathcal{C}(i) = k} ||x_i - m_k||^2
$$

The algorithm is an alternating optimization procedure, with convergence guarantees in practice (no rates).

The function J is not convex, thus K-means is not guaranteed to find a global minimum.

Computational cost

- 1. data assignment $O(Kn)$
- 2. cluster centers updates $O(n)$

K-means

Figure from Hastie, Tibshirani, Friedman

Example Vector Quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 − 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

Figure from Hastie, Tibshirani, Friedman

Spectral clustering - similarity graph

- \blacktriangleright A set of unlabeled data $\{x_i\}_{i=1}^n$ and some notion of similarity between data pairs s_{ij}
	- \blacktriangleright We may represent them as a similarity graph $G = (V, E)$

 \triangleright Clustering can be seen as a graph partitioning problem

Spectral clustering - graph notation

 $G = (V, E)$ undirected graph

- \blacktriangleright V : data correspond to the vertices
- \blacktriangleright E : Weighted adjacency matrix $W = (w_{ij})_{i,j=1}^n$ with $w_{ij} \geq 0$. W is symmetric $w_{ij} = w_{ji}$, as G is undirected.

► Degree of a vertex:
$$
d_i = \sum_{j=1}^n w_{ij}
$$

Degree matrix: $D = diag(d_i)$

 \blacktriangleright Sub-graphs:

 $A,B\subset V$ then $W(A,B)=\sum_{i\in A,j\in B}w_{ij}$ Subgraph size:

 $-$ |A| number of vertices

$$
- \text{ vol}(A) = \sum_{i \in A} d_i
$$

Spectral clustering - how to build the graph

We use the available pairwise similarities s_{ij}

- \triangleright ϵ -neighbourhood graph: connect vertices whose similarity is larger than ϵ
- \triangleright KNN graph: connect vertex v_i to its K neighbours. Not symmetric!
- ► fully connected graph: $s_{ij} = \exp(-d_{ij}^2/2\sigma^2)$ d is the Euclidean distance, $\sigma \geq 0$ controls the width of a neighborhood

Spectral clustering - how to build the graph

- \blacktriangleright n can be very large, it would be preferable if W was sparse
- \blacktriangleright In general it is better some notion of locality

$$
w_{ij} = \left\{ \begin{array}{cl} s_{ij} & \text{if } j \text{ is a KNN of } i \\ 0 & \text{otherwise} \end{array} \right.
$$

Unnormalized graph Laplacian: $L = D - W$ Properties:

For all $f \in \mathbb{R}^n$

$$
f^{\top}Lf = \frac{1}{2} \sum_{ij=1}^{n} w_{ij} (f_i - f_j)^2
$$

$$
f^{\top}Lf = f^{\top}Df - f^{\top}Wf
$$

= $\sum_{i} d_{i}f_{i}^{2} - \sum_{i,j} f_{i}f_{j}w_{ij}$
= $\frac{1}{2} \left(\sum_{i} (\sum_{j} w_{ij})f_{i}^{2} - 2 \sum_{ij} f_{i}f_{j}w_{ij} + \sum_{j} (\sum_{i} w_{ij})f_{j}^{2} \right) =$
= $\frac{1}{2} \sum_{ij} w_{ij} (f_{i} - f_{j})^{2}$

Unnormalized graph Laplacian: $L = D - W$

For each vector $f \in \mathbb{R}^n$

$$
f^{\top}Lf = \frac{1}{2} \sum_{ij=1}^{n} w_{ij} (f_i - f_j)^2
$$

The graph Laplacian measures the variation of f on the graph $(f^{\top} L f$ small if close points have close function values $f_i)$

- \blacktriangleright L is symmetric and positive semi-definite
- \blacktriangleright The smallest eigenvalue of L is 0 and its corresponding eigenvector is a vector of ones
- \blacktriangleright L has N non negative real-valued eigenvalues $0 = \lambda_1 < \lambda_2 < \ldots < \lambda_N$

Unnormalized graph Laplacian: $L = D - W$

For each vector $f \in \mathbb{R}^n$

$$
f^{\top}Lf = \frac{1}{2} \sum_{ij=1}^{n} w_{ij} (f_i - f_j)^2
$$

The graph Laplacian measures the variation of f on the graph $(f^{\top} L f$ small if close points have close function values $f_i)$

- \blacktriangleright L is symmetric and positive semi-definite
- \blacktriangleright The smallest eigenvalue of L is 0 and its corresponding eigenvector is a vector of ones
- \blacktriangleright L has N non negative real-valued eigenvalues $0 = \lambda_1 < \lambda_2 < \ldots < \lambda_N$

Laplacian and clustering: the multiplicity k of $\lambda_0 = 0$ equals the number of connected components in the graph

Unnormalized graph Laplacian:

 $L = D - W$

Normalized graph Laplacians: $L_{n1} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$ $L_{n2} = D^{-1}L = I - D^{-1}W$

A spectral clustering algorithm

\triangleright Graph Laplacian

- compute the Unnormalized Graph Laplacian L (unnormalized algorithm)
- compute a Normalized Graph Laplacian L_{n1} or L_{n2} (normalized algorithm)
- \triangleright compute the first k eigenvectors of the Laplacian (k number of clusters to compute)
- \blacktriangleright let $U_k \in \mathbb{R}^{n \times k}$ be the matrix containing the k eigenvectors as columns
- ► $y_j \in \mathbb{R}^k$ be the vector obtained by the j-th row of U_k $j = 1 \ldots n$. Apply k-means to $\{y_i\}$

A spectral clustering algorithm

Computational cost

- Eigendecomposition $O(n^3)$
- It may be enough to compute the first k eigenvalues/eigenvectors. There are algorithms for this

Example

The number of clusters

eigengap heuristic

Figure from Von Luxburg tutorial

Semi-supervised learning

Laplacian-based regularization algorithms (Belkin et al. 04) Set of labeled examples: $\{(x_i, y_i)\}_{i=1}^n$
Set of unlabeled examples: $\{(x_j)\}_{j=n+1}^{n+u}$

$$
f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) + \lambda_A ||f||^2 + \frac{\lambda_I}{u^2} f^T Lf
$$

Wrapping up

In this class we introduced the concept of data clustering and sketched some of the best known algorithms

Ulrike Von Luxburg - A tutorial on Spectral Clustering