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About this class

I Extend our model to deal with non linear problems

I Formulate the Representer Theorem

I Introduce kernel functions (+ examples)
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Linear model...

I Data set S = {(x1, y1), . . . , (xn, yn)} with xi ∈ Rd and yi ∈ R
I X̂ = (x1, . . . , xn)> ∈ Rn×d and ŷ = (y1, . . . , yn)>.

I Linear model w ∈ Rd: y = w>x

I

min
w∈Rd

`(yi, fw(xi)) + λ‖w‖2
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Linear model...

I Data set S = {(x1, y1), . . . , (xn, yn)} with xi ∈ Rd and yi ∈ R
I Linear model w ∈ Rd

y = w>x

Example d = 1 and S as in the plot.
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with w = (X̂>X̂ + λnI)−1X̂>ŷ for a given λ ≥ 0 (RLS).
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... and beyond

What if we want to learn a more general model?

y = w1x
2 + w2x+ w3

It is again a linear model! But in a different space (R3 instead of R)

y = w>φ(x)

with φ(x) = (x2, x, 1)> and w = (w1, w2, w3)
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Non linear models

I Let define ϕj(x) : Rd → R with j ∈ {1, . . . , D} (in general with
D >> d)

I φ : Rd → RD is named feature map with
φ(x) = (ϕ1(x), . . . , ϕD(x))>.

I w ∈ RD.

Generalized linear model

y = w>φ(x) =

D∑
j=1

wjϕj(x)
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How to compute a non linear model (least squares)

Let define Φ̂ = (φ(x1), . . . , φ(xn))> ∈ RD.
Φ̂ in generalized linear models has the same role of X̂ in the linear models

w = (Φ̂>Φ̂ + λnI)−1Φ̂>ŷ
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Can we do better?

(from a computational point of view)

Note that Φ̂>Φ̂ ∈ RD×D

when D is huge, Φ̂>Φ̂ is not computable.
Can we do better?

Representer Theorem (in the least squares context)
There exists a c ∈ Rn such that

w = Φ̂>c =

n∑
i=1

ciφ(xi),

in particular c = (Φ̂Φ̂> + λnI)−1ŷ.
Note that Φ̂Φ̂> ∈ Rn×n.
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Sketch of the Proof

I Let Φ̂ = UΣV > be the Singular Value Decomposition of Φ̂

I U>U = In×n, V >V = In×n
I Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (Note that

Σ = Σ>)
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MLCC 2017 21



Sketch of the Proof

I Let Φ̂ = UΣV > be the Singular Value Decomposition of Φ̂

I U>U = In×n, V >V = In×n
I Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (Note that

Σ = Σ>)

w = V ΣU>(UΣ2U> + λnUU>)−1ŷ
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Sketch of the Proof
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Representer Theorem for general Loss Functions

For a given loss function ` : R× R→ R, let the problem be

w∗ = arg min
w∈RD

1

n

n∑
i=1

`(yi, φ(xi)
>w) + λ‖w‖2

The solution can always be written as w∗ = Φ̂>c for some coefficients
vector c = (c1, . . . , cn)
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Representer Theorem for general Loss Functions

Let define the linear subspace Ŵ as Ŵ = {Φ̂>c | c ∈ Rn}.

By definition of linear subspace we have that

w = ŵ + w⊥ for each w ∈ RD

with ŵ ∈ Ŵ and v>w⊥ = 0 for each v ∈ Ŵ .
Moreover note that for each i ∈ {1, . . . n, } we have φ(xi) ∈ Ŵ .
Therefore for any xi with i ∈ {1, . . . , n}
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By definition of linear subspace we have that
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Moreover note that for each i ∈ {1, . . . n, } we have φ(xi) ∈ Ŵ .
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with ŵ ∈ Ŵ and v>w⊥ = 0 for each v ∈ Ŵ .
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Representer Theorem for general Loss Functions

Let define the linear subspace Ŵ as Ŵ = {Φ̂>c | c ∈ Rn}.
By definition of linear subspace we have that

w = ŵ + w⊥ for each w ∈ RD

with ŵ ∈ Ŵ and v>w⊥ = 0 for each v ∈ Ŵ .
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=0
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Representer Theorem for general Loss Functions

Let define the linear subspace Ŵ as Ŵ = {Φ̂>c | c ∈ Rn}.
By definition of linear subspace we have that

w = ŵ + w⊥ for each w ∈ RD

with ŵ ∈ Ŵ and v>w⊥ = 0 for each v ∈ Ŵ .
Moreover note that for each i ∈ {1, . . . n, } we have φ(xi) ∈ Ŵ .
Therefore for any xi with i ∈ {1, . . . , n}

φ(xi)
>w = φ(xi)

>ŵ
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Representer Theorem for general Loss Functions

Therefore the problem become

w∗ = arg min
w∈RD

1

n

n∑
i=1

V (yi, φ(xi)
>ŵ) + λ‖w‖2

Moreover, considering that ŵ>w⊥ = 0 we have

‖ŵ‖ ≤ ‖ŵ‖+ ‖w⊥‖ = ‖w‖

Now let w∗ = ŵ∗ + w∗⊥. The problem is minimized when w∗⊥ = 0.
That is

w∗ = Φ̂>c

for some c ∈ Rn.
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‖ŵ‖ ≤ ‖ŵ‖+ ‖w⊥‖ = ‖w‖
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Why we need Kernels...

Let analyze the RLS solution for the Generalized Linear model, we have

f(x) = φ(x)>Φ̂>(Φ̂Φ̂> + λnI)−1ŷ

Here φ(x)>Φ̂> is in Rn and is

φ(x)>Φ̂> = (φ(x)>φ(x1), . . . , φ(x)>φ(xn)),

moreover Φ̂Φ̂> is in Rn×n and is

(Φ̂Φ̂>)ij = φ(xi)
>φ(xj).

f(x) is expressed only by using inner products between feature
vectors
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Why we need Kernels...

Idea: In order to express f(x) we need only φ(x)>φ(x′) for each couple
x, x′ ∈ Rd.

Therefore we define the Kernel as

K(x, x′) = φ(x)>φ(x′)

In this way we have

f(x) = K̂>x (K̂ + λnI)−1ŷ

with K̂x = (K(x, x1), . . . ,K(x, xn)), (K̂)ij = K(xi, xj).
We don’t have to define an explicit φ, we need only to define a
Kernel K
The same holds for general loss functions indeed

f(x) = φ(x)>w∗ = φ(x)>Φ̂>c = K̂>x c =

n∑
i=1

ciK(x, xi).
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Examples of Kernel: Linear Kernel

For x, z ∈ Rd
K(x, z) = x>z

Proof
K(x, z) = φ(x)>φ(z)

with φ : Rd → Rd defined as

φ(x) = x.
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Examples of Kernel: Affine Kernel

For x, z ∈ Rd
K(x, z) = x>z + α2

Proof
K(x, z) = φ(x)>φ(z)

with φ : Rd → Rd+1 defined as

φ(x) = (x, α).
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Examples of Kernel: Polynomial Kernel of degree p

For p ∈ N
K(x, z) = (xz + 1)p with x, z ∈ R

Proof

(xz + 1)p =

p∑
k=0

qp,k(xz)k = φ(x)>φ(z)

with qp,k = p!
k!(p−k)! and φ : R→ Rp+1 defined as

φ(x) = (
√
qp,0,
√
qp,1x,

√
qp,2x

2, . . . ,
√
qp,kx

k, . . . ,
√
qp,px

p)

For x, z ∈ Rd it is defined as

K(x, z) = (x>z + 1)p
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Examples of Kernel: Polynomial Kernel of any degree

For x, z ∈ [0, 1] and 0 < α < 1

K(x, z) =
1

1− α2xz

Proof
1

1− αxz
=

∞∑
k=0

(α2xz)k = φ(x)>φ(z)

with φ : R→ RN defined as

φ(x) = (1, αx, α2x2, α3x3, . . . )

φ is infinite dimensional, but φ(x)>φ(x′) is computed in constant
time!!
For x, z ∈ Rd it is defined as

K(x, z) =
1

1− α2x>z
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Kernel - Characterization

K : Rd × Rd → R is a Kernel if it behaves like an inner product that is

1. it is symmetric

K(x, z) = K(z, x) for all x, z ∈ Rd

2. it is positive definite (p.d.).

For any n ∈ N and x1, . . . , xn ∈ Rd
define K̂ as (K̂)ij = K(xi, xj).

K is p.d. iff K̂ is p.d. for any n ∈ N, x1, . . . , xn ∈ Rd

The first is easy to check, the second is quite difficult!
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Kernel properties

Let K1 : Rd × Rd → R,K2 : Rd × Rd → R,K3 : Rt × Rt be Kernels and
x, x′ ∈ Rd, z, z′ ∈ Rt and α, β > 0 then the following are Kernels too

1. αK1(x, x′) + βK2(x, x′)

2. K1(x, x′)K2(x, x′)

3. p(K1(x, x′)) for any p a function whose polynomial expansion has
only non-negative coefficients

4. f(x)K1(x, x′)f(x′) for any f : Rd → R

5. K1(x,x
′)√

K1(x,x)K1(x′,x′)

6. K3(ψ(x), ψ(x)) for any ψ : Rd → Rt

7. αK1(x, x′) + βK3(z, z′)

8. K1(x, x′)K3(z, z′)
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Gaussian Kernel

Let x, x′ ∈ Rd and σ > 0, the gaussian kernel is

K(x, x′) = e−
1

2σ2
‖x−x′‖2

Proof K1(x, x′) = x>x′

2σ2 is a Kernel by Point 1

Let et =
∑∞
k=1

tk

k! has polynomial expansion with positive coefficients
therefore the following is a Kernel (Point 3)

K2(x, x′) = eK1(x,x
′) = e

x>x′
2σ2

is a Kernel.

Let define f(x) = e−
x>x
2σ2 then the following is a Kernel (Point 4)

K3(x, x′) = f(x)K2(x, x′)f(x′)

But K3 = K indeed

K3(x, x′) = f(x)e
x>x′
σ2 f(x′) = e−

x>x+x′>x′−2x>x′

2σ2 = e
−‖x−x′‖2

2σ2 = K(x, x′)

MLCC 2017 56



Gaussian Kernel

Let x, x′ ∈ Rd and σ > 0, the gaussian kernel is

K(x, x′) = e−
1

2σ2
‖x−x′‖2

Proof K1(x, x′) = x>x′

2σ2 is a Kernel by Point 1

Let et =
∑∞
k=1

tk

k! has polynomial expansion with positive coefficients
therefore the following is a Kernel (Point 3)

K2(x, x′) = eK1(x,x
′) = e

x>x′
2σ2

is a Kernel.

Let define f(x) = e−
x>x
2σ2 then the following is a Kernel (Point 4)

K3(x, x′) = f(x)K2(x, x′)f(x′)

But K3 = K indeed

K3(x, x′) = f(x)e
x>x′
σ2 f(x′) = e−

x>x+x′>x′−2x>x′

2σ2 = e
−‖x−x′‖2

2σ2 = K(x, x′)

MLCC 2017 57



Gaussian Kernel

Let x, x′ ∈ Rd and σ > 0, the gaussian kernel is

K(x, x′) = e−
1

2σ2
‖x−x′‖2

Proof K1(x, x′) = x>x′

2σ2 is a Kernel by Point 1

Let et =
∑∞
k=1

tk

k! has polynomial expansion with positive coefficients
therefore the following is a Kernel (Point 3)

K2(x, x′) = eK1(x,x
′) = e

x>x′
2σ2

is a Kernel.

Let define f(x) = e−
x>x
2σ2 then the following is a Kernel (Point 4)

K3(x, x′) = f(x)K2(x, x′)f(x′)

But K3 = K indeed

K3(x, x′) = f(x)e
x>x′
σ2 f(x′) = e−

x>x+x′>x′−2x>x′

2σ2 = e
−‖x−x′‖2

2σ2 = K(x, x′)

MLCC 2017 58



Gaussian Kernel

Let x, x′ ∈ Rd and σ > 0, the gaussian kernel is

K(x, x′) = e−
1

2σ2
‖x−x′‖2

Proof K1(x, x′) = x>x′

2σ2 is a Kernel by Point 1

Let et =
∑∞
k=1

tk

k! has polynomial expansion with positive coefficients
therefore the following is a Kernel (Point 3)

K2(x, x′) = eK1(x,x
′) = e

x>x′
2σ2

is a Kernel.

Let define f(x) = e−
x>x
2σ2 then the following is a Kernel (Point 4)

K3(x, x′) = f(x)K2(x, x′)f(x′)

But K3 = K indeed

K3(x, x′) = f(x)e
x>x′
σ2 f(x′) = e−

x>x+x′>x′−2x>x′

2σ2 = e
−‖x−x′‖2

2σ2 = K(x, x′)

MLCC 2017 59



Gaussian Kernel

Let x, x′ ∈ Rd and σ > 0, the gaussian kernel is

K(x, x′) = e−
1

2σ2
‖x−x′‖2

Proof K1(x, x′) = x>x′

2σ2 is a Kernel by Point 1

Let et =
∑∞
k=1

tk

k! has polynomial expansion with positive coefficients
therefore the following is a Kernel (Point 3)

K2(x, x′) = eK1(x,x
′) = e

x>x′
2σ2

is a Kernel.

Let define f(x) = e−
x>x
2σ2 then the following is a Kernel (Point 4)

K3(x, x′) = f(x)K2(x, x′)f(x′)

But K3 = K indeed

K3(x, x′) = f(x)e
x>x′
σ2 f(x′) = e−

x>x+x′>x′−2x>x′

2σ2 = e
−‖x−x′‖2

2σ2 = K(x, x′)

MLCC 2017 60



Wrapping up

In this class we discussed how to deal with high dimensional non linear
problems (feature maps and kernels). We also introduced the
Represented Theorem.
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Next class

Beyond prediction, we will focus more on data exploration and learning of
interpretable models.
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