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About this class

I We introduce a class of learning algorithms based on Tikhonov
regularization

I We study computational aspects of these algorithms .
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Empirical Risk Minimization (ERM)

I Empirical Risk Minimization (ERM): probably the most popular
approach to design learning algorithms.

I General idea: considering the empirical error

Ê(f) =
1

n

n∑
i=1

`(yi, f(xi)),

as a proxy for the expected error

E(f) = E[`(y, f(x))] =

∫
dxdyp(x, y)`(y, f(x)).
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The Expected Risk is Not Computable

Recall that

I ` measures the price we pay predicting f(x) when the true label is y

I E(f) cannot be directly computed, since p(x, y) is unknown
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From Theory to Algorithms: The Hypothesis Space

To turn the above idea into an actual algorithm, we:

I Fix a suitable hypothesis space H

I Minimize Ê over H

H should allow feasible computations and be rich, since the complexity
of the problem is not known a priori.
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Example: Space of Linear Functions

The simplest example of H is the space of linear functions:

H = {f : Rd → R : ∃w ∈ Rd such that f(x) = xTw, ∀x ∈ Rd}.

I Each function f is defined by a vector w

I fw(x) = xTw.
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Rich Hs May Require Regularization

I If H is rich enough, solving ERM may cause overfitting (solutions
highly dependent on the data)

I Regularization techniques restore stability and ensure generalization
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Tikhonov Regularization

Consider the Tikhonov regularization scheme,

min
w∈Rd

Ê(fw) + λ‖w‖2 (1)

It describes a large class of methods sometimes called Regularization
Networks.
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The Regularizer

I ‖w‖2 is called regularizer

I It controls the stability of the solution and prevents overfitting

I λ balances the error term and the regularizer
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Loss Functions

I Different loss functions ` induce different classes of methods

I We will see common aspects and differences in considering different
loss functions

I There exists no general computational scheme to solve Tikhonov
Regularization

I The solution depends on the considered loss function
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The Regularized Least Squares Algorithm

Regularized Least Squares: Tikhonov regularization

min
w∈RD

Ê(fw) + λ‖w‖2, Ê(fw) =
1

n

n∑
i=1

`(yi, fw(xi)) (2)

Square loss function:

`(y, fw(x)) = (y − fw(x))2

We then obtain the RLS optimization problem (linear model):

min
w∈RD

1

n

n∑
i=1

(yi − wTxi)2 + λwTw, λ ≥ 0. (3)
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Matrix Notation

I The n× d matrix Xn, whose rows are the input points

I The n× 1 vector Yn, whose entries are the corresponding outputs.

With this notation,

1

n

n∑
i=1

(yi − wTxi)2 =
1

n
‖Yn −Xnw‖2.
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Gradients of the ER and of the Regularizer

By direct computation,

I Gradient of the empirical risk w. r. t. w

− 2

n
XT
n (Yn −Xnw)

I Gradient of the regularizer w. r. t. w

2w
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The RLS Solution

By setting the gradient to zero, the solution of RLS solves the linear
system

(XT
nXn + λnI)w = XT

n Yn.

λ controls the invertibility of (XT
nXn + λnI)
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Choosing the Cholesky Solver

I Several methods can be used to solve the above linear system

I Cholesky decomposition is the method of choice, since

XT
nXn + λI

is symmetric and positive definite.

MLCC 2017 15



Time Complexity

Time complexity of the method :

I Training: O(nd2) (assuming n >> d)

I Testing: O(d)

MLCC 2017 16



Dealing with an Offset

For linear models, especially in low dimensional spaces, it is useful to
consider an offset:

wTx+ b

How to estimate b from data?
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Idea: Augmenting the Dimension of the Input Space

I Simple idea: augment the dimension of the input space, considering
x̃ = (x, 1) and w̃ = (w, b).

I This is fine if we do not regularize, but if we do then this method
tends to prefer linear functions passing through the origin (zero
offset), since the regularizer becomes:

‖w̃‖2 = ‖w‖2 + b2.
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Avoiding to Penalize the Solutions with Offset

We want to regularize considering only ‖w‖2, without penalizing the
offset.

The modified regularized problem becomes:

min
(w,b)∈RD+1

1

n

n∑
i=1

(yi − wTxi − b)2 + λ‖w‖2.
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Solution with Offset: Centering the Data

It can be proved that a solution w∗, b∗ of the above problem is given by

b∗ = ȳ − x̄Tw∗

where

ȳ =
1

n

n∑
i=1

yi

x̄ =
1

n

n∑
i=1

xi
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Solution with Offset: Centering the Data

w∗ solves

min
w∈RD

1

n

n∑
i=1

(yci − wTxci )2 + λ‖w‖2.

where yci = y − ȳ and xci = x− x̄ for all i = 1, . . . , n.

Note: This corresponds to centering the data and then applying the
standard RLS algorithm.
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Introduction: Regularized Logistic Regression

Regularized logistic regression: Tikhonov regularization

min
w∈Rd

Ê(fw) + λ‖w‖2, Ê(fw) =
1

n

n∑
i=1

`(yi, fw(xi)) (4)

With the logistic loss function:

`(y, fw(x)) = log(1 + e−yfw(x))
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The Logistic Loss Function

Figure: Plot of the logistic regression loss function
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Minimization Through Gradient Descent

I The logistic loss function is differentiable

I The candidate to compute a minimizer is the gradient descent (GD)
algorithm
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Regularized Logistic Regression (RLR)

I The regularized ERM problem associated with the logistic loss is
called regularized logistic regression

I Its solution can be computed via gradient descent

I Note:

∇Ê(fw) =
1

n

n∑
i=1

xi
−yie−yix

T
i wt−1

1 + e−yix
T
i wt−1

=
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1
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RLR: Gradient Descent Iteration

For w0 = 0, the GD iteration applied to

min
w∈Rd

Ê(fw) + λ‖w‖2

is

wt = wt−1 − γ

(
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1

+ 2λwt−1

)
︸ ︷︷ ︸

a

for t = 1, . . . T , where

a = ∇(Ê(fw) + λ‖w‖2)
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Logistic Regression and Confidence Estimation

I The solution of logistic regression has a probabilistic interpretation

I It can be derived from the following model

p(1|x) =
ex

Tw

1 + exTw︸ ︷︷ ︸
h

where h is called logistic function.

I This can be used to compute a confidence for each prediction
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Support Vector Machines

Formulation in terms of Tikhonov regularization:

min
w∈Rd

Ê(fw) + λ‖w‖2, Ê(fw) =
1

n

n∑
i=1

`(yi, fw(xi)) (5)

With the Hinge loss function:

`(y, fw(x)) = |1− yfw(x)|+
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A more classical formulation (linear case)

w∗ = min
w∈Rd

1

n

n∑
i=1

|1− yiw>xi|+ + λ‖w‖2

with λ = 1
C

MLCC 2017 29



A more classical formulation (linear case)

w∗ = min
w∈Rd,ξi≥0

‖w‖2 +
C

n

n∑
i=1

ξi subject to

yiw
>xi ≥ 1− ξi ∀i ∈ {1 . . . n}
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A geometric intuition - classification

In general do you have many solutions
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A geometric intuition - classification

Intuitively I would choose an “equidistant” line
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Maximum margin classifier

I want the classifier that

I classifies perfectly the dataset

I maximize the distance from its closest examples
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Point-Hyperplane distance

How to do it mathematically? Let w our separating hyperplane. We have

x = αw + x⊥

with α = x>w
‖w‖ and x⊥ = x− αw.

Point-Hyperplane distance: d(x,w) = ‖x⊥‖
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Margin

An hyperplane w well classifies an example (xi, yi) if

I yi = 1 and w>xi > 0 or

I yi = −1 and w>xi < 0

therefore xi is well classified iff yiw
>xi > 0

Margin: mi = yiw
>xi

Note that x⊥ = x− yimi

‖w‖ w
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Maximum margin classifier definition

I want the classifier that

I classifies perfectly the dataset

I maximize the distance from its closest examples

w∗ = max
w∈Rd

min
1≤i≤n

d(xi, w)2 subject to

mi > 0 ∀i ∈ {1 . . . n}

Let call µ the smallest mi thus we have

w∗ = max
w∈Rd

min
1≤i≤n,µ≥0

‖xi‖ −
(x>i w)2

‖w‖2
subject to

yiw
>xi ≥ µ ∀i ∈ {1 . . . n}

that is
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Computation of w∗

w∗ = max
w∈Rd

min
µ≥0
− µ2

‖w‖2
subject to

yiw
>xi ≥ µ ∀i ∈ {1 . . . n}
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Computation of w∗

w∗ = max
w∈Rd, µ≥0

µ2

‖w‖2
subject to

yiw
>xi ≥ µ ∀i ∈ {1 . . . n}

Note that if yiw
>xi ≥ µ, then yi(αw)>xi ≥ αµ and µ2

‖w‖2 = (αµ)2

‖αw‖2 for

any α ≥ 0. Therefore we have to fix the scale parameter, in particular we
choose µ = 1.
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Computation of w∗

w∗ = max
w∈Rd

1

‖w‖2
subject to

yiw
>xi ≥ 1 ∀i ∈ {1 . . . n}
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Computation of w∗

w∗ = min
w∈Rd

‖w‖2 subject to

yiw
>xi ≥ 1 ∀i ∈ {1 . . . n}
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What if the problem is not separable?

We relax the constraints and penalize the relaxation

w∗ = min
w∈Rd

‖w‖2 subject to

yiw
>xi ≥ 1 ∀i ∈ {1 . . . n}
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What if the problem is not separable?

We relax the constraints and penalize the relaxation

w∗ = min
w∈Rd,ξi≥0

‖w‖2 +
C

n

n∑
i=1

ξi subject to

yiw
>xi ≥ 1− ξi ∀i ∈ {1 . . . n}

where C is a penalization parameter for the average error 1
n

∑n
i=1 ξi.
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Dual formulation

It can be shown that the solution of the SVM problem is of the form

w =

n∑
i=1

αiyixi

where αi are given by the solution of the following quadratic
programming problem:

max
α∈Rn

∑n
i=1 αi −

1
2

∑n
i,j=1 yiyjαiαjx

T
i xj i = 1, . . . , n

subj to αi ≥ 0

I The solution requires the estimate of n rather than D coefficients

I αi are often sparse. The input points associated with non-zero
coefficients are called support vectors
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Wrapping up

Regularized Empirical Risk Minimization

w∗ = min
w∈Rd

1

n

n∑
i=1

`(yi, w
>xi) + λ‖w‖2

Examples of Regularization Networks

I `(y, t) = (y − t)2 (Square loss) leads to Least Squares

I `(y, t) = log(1 + e−yt) (Logistic loss) leads to Logistic Regression

I `(y, t) = |1− yt|+ (Hinge loss) leads to Maximum Margin Classifier
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Next class

... beyond linear models!
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