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Dimensionality Reduction

In many practical applications it is of interest to reduce the
dimensionality of the data:

I data visualization

I data exploration: for investigating the ”effective” dimensionality of
the data
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Dimensionality Reduction (cont.)

This problem of dimensionality reduction can be seen as the problem of
defining a map

M : X = RD → Rk, k � D,

according to some suitable criterion.

In the following data reconstruction will be our guiding principle.
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Principal Component Analysis

PCA is arguably the most popular dimensionality reduction procedure.

It is a data driven procedure that given an unsupervised sample

S = (x1, . . . , xn)

derive a dimensionality reduction defined by a linear map M .

PCA can be derived from several prospective and here we give a
geometric derivation.
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Dimensionality Reduction by Reconstruction

Recall that, if
w ∈ RD, ‖w‖ = 1,

then (wTx)w is the orthogonal projection of x on w
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Dimensionality Reduction by Reconstruction (cont.)

First, consider k = 1. The associated reconstruction error is

‖x− (wTx)w‖2

(that is how much we lose by projecting x along the direction w)

Problem:
Find the direction p allowing the best reconstruction of the training set
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Dimensionality Reduction by Reconstruction (cont.)

Let SD−1 = {w ∈ RD | ‖w‖ = 1} is the sphere in D dimensions.
Consider the empirical reconstruction minimization problem,

min
w∈SD−1

1

n

n∑
i=1

‖xi − (wTxi)w‖2.

The solution p to the above problem is called the first principal
component of the data
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An Equivalent Formulation

A direct computation shows that ‖xi − (wTxi)w‖2 = ‖xi‖ − (wTxi)
2

Then, problem

min
w∈SD−1

1

n

n∑
i=1

‖xi − (wTxi)w‖2

is equivalent to

max
w∈SD−1

1

n

n∑
i=1

(wTxi)
2
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Reconstruction and Variance

Assume the data to be centered, x̄ = 1
nxi = 0, then we can interpret the

term
(wTx)2

as the variance of x in the direction w.

The first PC can be seen as the direction along which the data have
maximum variance.

max
w∈SD−1

1

n

n∑
i=1

(wTxi)
2
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Centering

If the data are not centered, we should consider

max
w∈SD−1

1

n

n∑
i=1

(wT (xi − x̄))2 (1)

equivalent to

max
w∈SD−1

1

n

n∑
i=1

(wTxci )
2

with xc = x− x̄.
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Centering and Reconstruction

If we consider the effect of centering to reconstruction it is easy to see
that we get

min
w,b∈SD−1

1

n

n∑
i=1

‖xi − ((wT (xi − b))w + b)‖2

where
((wT (xi − b))w + b

is an affine (rather than an orthogonal) projection
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PCA as an Eigenproblem

A further manipulation shows that PCA corresponds to an eigenvalue
problem.

Using the symmetry of the inner product,

1

n

n∑
i=1

(wTxi)
2 =

1

n

n∑
i=1

wTxiw
Txi =

1

n

n∑
i=1

wTxix
T
i w = wT (

1

n

n∑
i=1

xix
T
i )w

Then, we can consider the problem

max
w∈SD−1

wTCnw, Cn =
1

n

n∑
i=1

xix
T
i
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PCA as an Eigenproblem (cont.)

We make two observations:

I The (”covariance”) matrix Cn = 1
n

∑n
i=1X

T
nXn is symmetric and

positive semi-definite.

I The objective function of PCA can be written as

wTCnw

wTw

the so called Rayleigh quotient.

Note that, if Cnu = λu then uTCnu
uTu

= λ, since u is normalized.

Indeed, it is possible to show that the Rayleigh quotient achieves its
maximum at a vector corresponding to the maximum eigenvalue of Cn

MLCC 2017 25



PCA as an Eigenproblem (cont.)

We make two observations:

I The (”covariance”) matrix Cn = 1
n

∑n
i=1X

T
nXn is symmetric and

positive semi-definite.

I The objective function of PCA can be written as

wTCnw

wTw

the so called Rayleigh quotient.

Note that, if Cnu = λu then uTCnu
uTu

= λ, since u is normalized.

Indeed, it is possible to show that the Rayleigh quotient achieves its
maximum at a vector corresponding to the maximum eigenvalue of Cn

MLCC 2017 26



PCA as an Eigenproblem (cont.)

We make two observations:

I The (”covariance”) matrix Cn = 1
n

∑n
i=1X

T
nXn is symmetric and

positive semi-definite.

I The objective function of PCA can be written as

wTCnw

wTw

the so called Rayleigh quotient.

Note that, if Cnu = λu then uTCnu
uTu

= λ, since u is normalized.

Indeed, it is possible to show that the Rayleigh quotient achieves its
maximum at a vector corresponding to the maximum eigenvalue of Cn

MLCC 2017 27



PCA as an Eigenproblem (cont.)

We make two observations:

I The (”covariance”) matrix Cn = 1
n

∑n
i=1X

T
nXn is symmetric and

positive semi-definite.

I The objective function of PCA can be written as

wTCnw

wTw

the so called Rayleigh quotient.

Note that, if Cnu = λu then uTCnu
uTu

= λ, since u is normalized.

Indeed, it is possible to show that the Rayleigh quotient achieves its
maximum at a vector corresponding to the maximum eigenvalue of Cn

MLCC 2017 28



PCA as an Eigenproblem (cont.)

Computing the first principal component of the data reduces to
computing the biggest eigenvalue of the covariance and the
corresponding eigenvector.

Cnu = λu, Cn =
1

n

n∑
i=1

XT
nXn
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Beyond the First Principal Component

We discuss how to consider more than one principle component (k > 1)

M : X = RD → Rk, k � D

The idea is simply to iterate the previous reasoning
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Residual Reconstruction

The idea is to consider the one dimensional projection that can best
reconstruct the residuals

ri = xi − (pTxi)pi

An associated minimization problem is given by

min
w∈SD−1,w⊥p

1

n

n∑
i=1

‖ri − (wT ri)w‖2.

(note: the constraint w ⊥ p)
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Residual Reconstruction (cont.)

Note that for all i = 1, . . . , n,

‖ri − (wT ri)w‖2 = ‖ri‖2 − (wT ri)
2 = ‖ri‖2 − (wTxi)

2

since w ⊥ p

Then, we can consider the following equivalent problem

max
w∈SD−1,w⊥p

1

n

n∑
i=1

(wTxi)
2 = wTCnw.
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PCA as an Eigenproblem

max
w∈SD−1,w⊥p

1

n

n∑
i=1

(wTxi)
2 = wTCnw.

Again, we have to minimize the Rayleigh quotient of the covariance
matrix with the extra constraint w ⊥ p

Similarly to before, it can be proved that the solution of the above
problem is given by the second eigenvector of Cn, and the corresponding
eigenvalue.
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PCA as an Eigenproblem (cont.)

Cnu = λu, Cn =
1

n

n∑
i=1

xix
T
i

The reasoning generalizes to more than two components:
computation of k principal components reduces to finding k eigenvalues
and eigenvectors of Cn.
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Remarks

I Computational complexity roughly O(kD2) (complexity of forming
Cn is O(nD2)). If we have n points in D dimensions and n� D
can we compute PCA in less than O(nD2)?

I The dimensionality reduction induced by PCA is a linear projection.
Can we generalize PCA to non linear dimensionality reduction?
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Singular Value Decomposition

Consider the data matrix Xn, its singular value decomposition is given by

Xn = UΣV T

where:

I U is a n by k orthogonal matrix,

I V is a D by k orthogonal matrix,

I Σ is a diagonal matrix such that Σi,i =
√
λi, i = 1, . . . , k and

k ≤ min{n,D}.

The columns of U and the columns of V are the left and right singular
vectors and the diagonal entries of Σ the singular values.
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Singular Value Decomposition (cont.)

The SVD can be equivalently described by the equations

Cnpj = λjpj ,
1

n
Knuj = λjuj ,

Xnpj =
√
λjuj ,

1

n
XT

n uj =
√
λjpj ,

for j = 1, . . . , d and where Cn = 1
nX

T
nXn and 1

nKn = 1
nXnX

T
n
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PCA and Singular Value Decomposition

If n� p we can consider the following procedure:

I form the matrix Kn, which is O(Dn2)

I find the first k eigenvectors of Kn, which is O(kn2)

I compute the principal components using

pj =
1√
λj
XT

n uj =
1√
λj

n∑
i=1

xiu
i
j , j = 1, . . . , d

where u = (u1, . . . , un), This is O(knD) if we consider k principal
components.
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Beyond Linear Dimensionality Reduction?

By considering PCA we are implicitly assuming the data to lie on a linear
subspace....

...it is easy to think of situations where this assumption might violated.

Can we use kernels to obtain non linear generalization of PCA?
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From SVD to KPCA

Using SVD the projection of a point x on a principal component pj , for
j = 1, . . . , d, is

(M(x))j = xT pj =
1√
λj
xTXT

n uj =
1√
λj

n∑
i=1

xTxiu
i
j ,

Recall

Cnpj = λjpj ,
1

n
Knuj = λjuj ,

Xnpj =
√
λjuj ,

1

n
XT

n uj =
√
λjpj ,
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PCA and Feature Maps

(M(x))j =
1√
λj

n∑
i=1

xTxiu
i
j ,

What if consider a non linear
feature-map Φ : X → F , before
performing PCA?

(M(x))j = Φ(x)T pj =
1√
λj

n∑
i=1

Φ(x)T Φ(xi)u
i
j ,

where Knσj = σjuj and (Kn)i,j = Φ(x)T Φ(xj).
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Kernel PCA

(M(x))j = Φ(x)T pj =
1√
λj

n∑
i=1

Φ(x)T Φ(xi)u
i
j ,

If the feature map is defined by a positive definite kernel
K : X ×X → R, then

(M(x))j =
1√
λj

n∑
i=1

K(x, xi)u
i
j ,

where Knσj = σjuj and (Kn)i,j = K(xi, xj).
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Wrapping Up

In this class we introduced PCA as a basic tool for dimensionality
reduction. We discussed computational aspect and extensions to non
linear dimensionality reduction (KPCA)
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Next Class

In the next class, beyond dimensionality reduction, we ask how we can
devise interpretable data models, and discuss a class of methods based on
the concept of sparsity.
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