MLCC 2017
Local Methods and Bias Variance Trade-Off

Lorenzo Rosasco
UNIGE-MIT-IIT

June 25, 2017

About this class

1. Introduce a basic class of learning methods, namely local methods.

2. Discuss the fundamental concept of bias-variance trade-off to
understand parameter tuning (a.k.a. model selection)

MLCC 2017

Outline

Learning with Local Methods

MLCC 2017

The problem

What is the price of one house given its area?

MLCC 2017

The problem

What is the price of one house given its area? Start from data...

MLCC 2017

The problem

What is the price of one house given its area? Start from data...

x10°
.

o
Area (m?) | Price (€)

T1 = 62 y1 = 99,200 ot

T2 = 64 yo = 135,700 o %5
x3 = 65 ys = 93,300 ° L %°
T4 = 66 ya = 114,000 4o oo &

Let S the houses example dataset (n = 100)

S = {($1,y1)7 RN (mfhyn)}

MLCC 2017

The problem

What is the price of one house given its area? Start from data...

x10°
.

Area (m?) | Price (€)

1 =62 | y1 = 99,200 ot

To =64 | yo = 135,700 S
x3 = 65 ys = 93,300 ° 0,

24 =66 | ya=114,000 e 6

Let S the houses example dataset (n = 100)

S = {(33171/1)7 RN (mfhyn)}

Given a new point z* we want to predict y* by means of 5.

MLCC 2017

Example

Let z* a 300m? house.

MLCC 2017

Let z* a 300m? house.

Area (m?) | Price (€)

X93 = 255 Yoz = 274, 600
Tos = 264 | yos = 324,900
Xog5 = 310 Yos = 311, 200
Tog = 480

Yo = 515, 400

Example

x10

MLCC 2017

Let z* a 300m? house.

Area (m?) | Price (€)

X93 = 255 Yoz = 274, 600
Tos = 264 | yos = 324,900
Xog5 = 310 Yos = 311, 200
Tog = 480

Yo = 515, 400

What is its price?

Example

x10

MLCC 2017

Nearest Neighbors

Nearest Neighbor: y* is the same of the closest point to * in S.

y* = 311,200

s5105
Area (m?) | Price (€) st
Xr93 = 255 Yo3 = 274, 600 S
Tos = 264 | you = 324,900 o og0 |
X9 = 310 Yos = 311, 200 Al ° (gzog 8
xos = 480 Yoe = 515,400 8%@@0 o

99°%8 S o

. . 1,% >

o .

MLCC 2017

Nearest Neighbor: y* is the same of the closest point to * in S.

Nearest Neighbors

Area (m?) | Price (€)

Xr93 = 255 Yo3 = 274, 600
Tos = 264 | yos = 324,900
Xo5 = 310 Yos = 311, 200
Tog = 480

Yo = 515, 400

y* = 311,200

MLCC 2017

Nearest Neighbors

» S = {(xuyz)}?ZI with T; € RDayi eR

MLCC 2017

13

Nearest Neighbors

» S = {(xuyl)}?:l with T; € RDayi eR

> z* the new point z* € RP,

MLCC 2017

Nearest Neighbors

» S = {(xzayl)}?ZI with T; € RDayi eR

> z* the new point z* € RP,

> y. the predicted output y. = f(z*) where

.....

MLCC 2017

Nearest Neighbors

» S = {(xzayl)}?ZI with T; € RDayi eR

> z* the new point z* € RP,

> y. the predicted output y. = f(z*) where

.....

Computational cost O(nD): we compute n times the distance ||z — x|
that costs O(D)

MLCC 2017

Nearest Neighbors

» S = {(xzayl)}?ZI with T; € RDayi eR
> z* the new point z* € RP,

> y. the predicted output y. = f(z*) where

Yy« =y; j=arg min |z — x|
1=1,...,n

Computational cost O(nD): we compute n times the distance ||z — x|
that costs O(D)

In general let d : RP x RP a distance on the input space, then

flx)=y; j=arg 471{1111 d(x, ;)

MLCC 2017

Extensions

Nearest Neighbor takes y* is the same of the closest point to z* in S.

Area (m?) | Price (€)

T93 = 255 | yo3 = 274,600
Tog4 = 264 Yoqa = 324, 900
Xo5 = 310 Yos = 311, 200
Tog = 480

yoe = 515,400

x10°
6%

0 L L L L L L ,
50 100 150 200 250 300 350 400 450 500

MLCC 2017 18

Nearest Neighbor takes y* is the same of the closest point to z* in S.

Area (m?) | Price (€)

X9z = 255 Yoz = 274, 600
Tos = 264 | yos = 324,900
Tos = 310 | yo5 = 311,200
Tog = 480

Yo = 515, 400

X
60

10°

Extensions

Can we do better? (for example using more points)

MLCC 2017

K-Nearest Neighbors

K-Nearest Neighbor: y* is the mean of the values of the K closest
point to z* in S. If K = 3 we have

274,600 + 324,900 + 311, 200

* 2 = 303,600
63<105
Area (m?) | Price (€) st °
: : |
o3 = 255 Yo3 = 274, 600 o ©g
Toa = 264 | you = 324,900 o o0 °
z95 = 310 | y95 = 311,200 J o Q?‘jjof 8
9 = 480 Yoe = 515,400 8%@%00 o
Al

0 L L L L L L ,
50 100 150 200 250 300 350 400 450 500

MLCC 2017

K-Nearest Neighbors

K-Nearest Neighbor: y* is the mean of the values of the K closest
point to z* in S. If K = 3 we have

274,600 + 324,900 + 311, 200

* . = 303, 600
63<105
Area (m?) | Price (€) st °
: : i
o3 = 255 Yo3 = 274, 600 o ©g
Tos = 264 | you = 324,900 3 o0 *®
z95 = 310 | y95 = 311,200 J o Q?‘jjof 8
9 = 480 Yoe = 515,400 8%@%00 o
L

0 L L L L L L ,
50 100 150 200 250 300 350 400 450 500

MLCC 2017

K-Nearest Neighbors

> S ={(2i,yi)}ioy with z; € RP,y; € R
» z* the new point z* € RP,

MLCC 2017

22

K-Nearest Neighbors

> S ={(2i,yi)}ioy with z; € RP,y; € R
» z* the new point z* € RP,
» Let K be an integer K << n,

MLCC 2017

23

vV v vvY

K-Nearest Neighbors

S = {(xs,yi) 7=y with z; € RP,y; € R
z* the new point 2* € RP,
Let K be an integer K << n,

Ji,- -+, Ji defined as j; = argmin;eqy . oy [|2* — ;]| and

jt = arg minie{l)‘_,m}\{jlwyjtil} ||13* — 1'1” for t € {2, . 7K},

MLCC 2017

24

vV v vvY

v

K-Nearest Neighbors

S = {(xs,yi) 7=y with z; € RP,y; € R
z* the new point 2* € RP,
Let K be an integer K << n,

Ji,- -+, Ji defined as j; = argmin;eqy . oy [|2* — ;]| and

jt = arg minie{l)‘_wn}\{jlwyjtil} ||13* — 1'1” for t € {2, . 7K},

predicted output

y*:% Z Yi

i€{j1,.Jr }

MLCC 2017

25

K-Nearest Neighbors (cont.)

MLCC 2017

26

K-Nearest Neighbors (cont.)

1 K
f(.T) = E Zyji
i=1

» Computational cost O(nD + nlogn): compute the n distances
|z — a;|| for i = {1,...,n} (each costs O(D)). Order them
O(nlogn).

MLCC 2017

27

K-Nearest Neighbors (cont.)

1 K
f(.’L') = E Zyji
i=1

» Computational cost O(nD + nlogn): compute the n distances
|z — a;|| for i = {1,...,n} (each costs O(D)). Order them
O(nlogn).

» General Metric d f is the same, but j1,...,jx are defined as
J1 = argmingeqy . ny d(x, ;) and
jt = arg minie{l,...,n}\{jl,...,jt,l} d(z,x;) fort € {2,..., K}

MLCC 2017 28

Parzen Windows

K-NN puts equal weights on the values of the selected points.

MLCC 2017

29

Parzen Windows

K-NN puts equal weights on the values of the selected points.
Can we generalize it?

MLCC 2017

30

Parzen Windows

K-NN puts equal weights on the values of the selected points.

Can we generalize it?
Closer points to z* should influence more its value

MLCC 2017

31

Parzen Windows

K-NN puts equal weights on the values of the selected points.

Can we generalize it?
Closer points to z* should influence more its value
PARZEN WINDOWS:

fa) = SLUTE

where k is a similarity function
> k(z,2') >0 for all z,2’ € RP
> k(z,2’) = 1 when ||z —2/|| = 0
> k(x,2') = 0 when ||z — 2'|| = o0

MLCC 2017

32

Parzen Windows

Examples of k&
> ki(z, ') = sign (1 - ”z;—z'H) with a o >0
+

v

ko(z,2') = (1 - M) witha o >0
+

v

ks(z,z') = (1 - HJB;—§/”2)+ witha ¢ >0

’
_llz—a)?

> ky(z,2’)=e " 27 withao >0

’
|lz—=2]|

> ks(z,2’)=e"" o withao>0

— ki
— k2
— k3
— k4
— k5

1 2 3

MLCC 2017 33

K-NN example

K-Nearest neighbor depends on K.

When K =1

-1.51

0.5

-0.5

34

MLCC 2017

K-NN example

K-Nearest neighbor depends on K.
When K = 2

MLCC 2017

35

K-NN example

K-Nearest neighbor depends on K.

When K = 3

-1.51

0.5

-0.5

36

MLCC 2017

K-NN example

K-Nearest neighbor depends on K.

When K =4

1.5

-1.51

0.5

-0.5

37

MLCC 2017

K-NN example

K-Nearest neighbor depends on K.

When K =5

1.5

-1.51

0.5

-0.5

38

MLCC 2017

K-NN example

K-Nearest neighbor depends on K.

When K =9

°
oo °
® .
“.no L4 .
%o o o
% .
Tyl
e °2 PO. e o °
o 00 mooo% S 7 °
-.o-‘o Cd ° o
. ® %o ° ° ° e
. ‘.
. ce, o
d - oooo'%o .
SR e
é ° ° .cl Pl
° o °
° ° . ® o
° . oo .
°® ® e
)
° .oo
° o oo
. Ce
L4 .
°
. . . L e .
0 - 0 B 0 0

0.5

-0.5

39

MLCC 2017

K-NN example

K-Nearest neighbor depends on K.

When K =15

.
oo °
® .
“.no L4 .
%o o o
“.d ..
Tl
oo -w o o °
o 00 -ooo% o °
-.o-‘o Cd °
® % o i oo\
. . ° o
. ‘.
. ce, o
d ‘ oooo'%o .
S e
. ° ° .cl Pl
° o °
° ° . ® o
° . oo °
°® ® o
.
° .oo
° o oo
. Ce
L4 .
°
. . , L e .
0 - 0 B 0 0

0.5

-0.5

40

MLCC 2017

K-NN example

K-Nearest neighbor depends on K.

15F o
¢ e ® o .. : o"o. *
° M O g o;- o, °
1F ° & pecy e I N 1
0o M ®ee
o e % ° i, % et
. o ° ‘ ..\. . .
05F o, M . :. e @& |
. o o . .
® o0 %o .
o ® . o S . . 1
(] ° ° o.o '.. o
4 LY . s .]
e ° g0 ce ¢ .
_05F .o - ° o - ° i
o % ©
.
_17‘0 . i
° e ®
_1-57 L L L L L]
-0.5 0 0.5 1 15

Changing K the result changes a lot! How to select K7?

MLCC 2017 41

Outline

From Bias-Variance to Cross-Validation

MLCC 2017

42

Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and

X =(z],...,2)).

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

MLCC 2017

43

Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and
X =(z],...,2)).

rrn

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

The expected loss Ek is

Ex =EsE, (y — fs,x(z))?

MLCC 2017 44

Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and
X =(z],...,2)).

rrn

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

The expected loss Ek is

Ex =EsE, (y — fs,x(z))?

Optimal hyperparameter K* should minimize Ek

MLCC 2017

45

Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and
X =(z],...,2)).

rrn

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

The expected loss Ek is

Ex =EsE, (y — fs,x(z))?

Optimal hyperparameter K* should minimize Ek

K* = arg min £
gKEK

MLCC 2017 46

Optimal choice for the Hyper-parameters (cont.)

Optimal hyperparameter K* should minimize £k

MLCC 2017

47

Optimal choice for the Hyper-parameters (cont.)

Optimal hyperparameter K* should minimize £k

K* = arg min £
gKeK

MLCC 2017

48

Optimal choice for the Hyper-parameters (cont.)

Optimal hyperparameter K* should minimize £k
K* = in &
g iy i

Ideally! (In practice we don't have access to the distribution)

» We can still try to understand the above minimization problem: does
a solution exists? What does it depend on?

> Yet, ultimately, we need something we can compute!

MLCC 2017 49

Example: regression problem

Define the pointwise expected loss

Ex(z) = EsEyu(y — fo.x(2))?

MLCC 2017

50

Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().

MLCC 2017

51

Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0

MLCC 2017 52

Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02

MLCC 2017 53

Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02
Now Exc(2) = EsEy . (y — fs.x(2))?

MLCC 2017

54

Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02
Now Ex (z) = EsByp.(y — fs,k (2))? = EsEyo(fu(2) + 6 — fs,x())?

MLCC 2017

55

Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02
Now Ex (z) = BsBy o (y — fs,k(2))? = BsEyo(f2(x) + 6 — fs x(2))?
that is
Ex(x) = Es(fu(2) = fsx(2))’ +0°

MLCC 2017

56

Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fox(z Zf* x)

lEK

MLCC 2017

57

Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fox(z Zf* x)

lEK

Note that fg x(z) = Ey|me,K(37)-

MLCC 2017

58

Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

for() = 2 3 ful)

leK,
Note that f&K(JC) = Eyme,K(x).
Consider
Ex () = (fulz) = Ex fs k(1)) + Es(fs.rc(x) = fs,x(x))* + 0”
bias variance

MLCC 2017 59

Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fs k(@ Zf* (1)

leK

Note that fs x(z) = Ey|me,K(x)'
Consider

Exc() = (&) = Ex s () + 7aBx 3 Byl = fula))? +

K
bias €K,

g

variance

MLCC 2017

60

Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fox(z Zf* x)

lEK

Note that fS,K(;(;) = Ey|fo,K(l‘).

Consider 2
Ex(x) = (folx) — Ex fs.x(x))* + % e

—

variance

bias

MLCC 2017

61

Errors

Bias Variance trade-off

Variance Bias

MLCC 2017

62

How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:

MLCC 2017

63

How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:

> an optimal parameter exists and

MLCC 2017

64

How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:
» an optimal parameter exists and

» it depends on the noise and the unknown target function.

MLCC 2017

65

How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:
» an optimal parameter exists and

» it depends on the noise and the unknown target function.

How to choose K in practice?

MLCC 2017

66

How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:
» an optimal parameter exists and

» it depends on the noise and the unknown target function.

How to choose K in practice?

» ldea: train on some data and validate the parameter on new unseen
data as a proxy for the ideal case.

MLCC 2017 67

For each K

Hold-out Cross-validation

MLCC 2017

68

Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

MLCC 2017

69

Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fTK())2

MLCC 2017

70

Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fTK())2

MLCC 2017

71

Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fT K())2
3. Select K that minimize Ex.

MLCC 2017

72

Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fT K())2
3. Select K that minimize Ex.

The above procedure can be repeated to augment stability and K
selected to minimize error over trials.

MLCC 2017

73

Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'
5 \V| Zac yEV(y fTK())2
3. Select K that minimize .

The above procedure can be repeated to augment stability and K
selected to minimize error over trials.

There are other related parameter selection methods (k-fold cross
validation, leave-one out...).

MLCC 2017 4

Error

0.25

0.2

0.15

0.1

0.05

Training vs. validation error

Training and Validation Error behavior

T=50% S; n=200
T T T T T T
Validation error
—— Training error
.
8 10 12 14 16 18
K

MLCC 2017

20

e

Training and Validation Error behavior

Training vs. validation error
T=50% S; n=200
T

Error

T
Validation error
Training error

2 4 6 8 10 12 14 16 18 20

MLCC 2017

Wrapping up

In this class we made our first encounter with learning algorithms (local
methods) and the problem of tuning their parameters (via bias-variance
trade-off and cross-validation) to avoid overfitting and achieve
generalization.

MLCC 2017 ”

Next Class

High Dimensions: Beyond local methods!

1 dimension:
o 10 positions
[]

2 tﬁnwnsivus:<
100 positions
L]

3 dimensions:
» 000 positions!

MLCC 2017

78

	Learning with Local Methods
	From Bias-Variance to Cross-Validation

