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About this class

1. Introduce a basic class of learning methods, namely local methods.

2. Discuss the fundamental concept of bias-variance trade-off to
understand parameter tuning (a.k.a. model selection)
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Outline

Learning with Local Methods
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The problem

What is the price of one house given its area?
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The problem

What is the price of one house given its area? Start from data...

x10°
.

o
Area (m?) | Price (€)

T1 = 62 y1 = 99,200 ot

T2 = 64 yo = 135,700 o %5
x3 = 65 ys = 93,300 ° L %°
T4 = 66 ya = 114,000 4o oo &

Let S the houses example dataset (n = 100)

S = {($1,y1)7 RN (mfhyn)}

MLCC 2017



The problem

What is the price of one house given its area? Start from data...

x10°
.

Area (m?) | Price (€)

1 =62 | y1 = 99,200 ot

To =64 | yo = 135,700 S
x3 = 65 ys = 93,300 ° 0,

24 =66 | ya=114,000 e 6

Let S the houses example dataset (n = 100)

S = {(33171/1)7 RN (mfhyn)}

Given a new point z* we want to predict y* by means of 5.
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Example

Let z* a 300m? house.
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Let z* a 300m? house.

Area (m?) | Price (€)

X93 = 255 Yoz = 274, 600
Tos = 264 | yos = 324,900
Xog5 = 310 Yos = 311, 200
Tog = 480

Yo = 515, 400

Example

x10
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Let z* a 300m? house.

Area (m?) | Price (€)

X93 = 255 Yoz = 274, 600
Tos = 264 | yos = 324,900
Xog5 = 310 Yos = 311, 200
Tog = 480

Yo = 515, 400

What is its price?

Example

x10
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Nearest Neighbors

Nearest Neighbor: y* is the same of the closest point to * in S.

y* = 311,200

s5105
Area (m?) | Price (€) st
Xr93 = 255 Yo3 = 274, 600 S
Tos = 264 | you = 324,900 o og0 |
X9 = 310 Yos = 311, 200 Al ° (gzog 8
xos = 480 Yoe = 515,400 8%@@0 o

99°%8 S o

. . 1,% >

o .
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Nearest Neighbor: y* is the same of the closest point to * in S.

Nearest Neighbors

Area (m?) | Price (€)

Xr93 = 255 Yo3 = 274, 600
Tos = 264 | yos = 324,900
Xo5 = 310 Yos = 311, 200
Tog = 480

Yo = 515, 400

y* = 311,200
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Nearest Neighbors

» S = {(xuyz)}?ZI with T; € RDayi eR
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Nearest Neighbors

» S = {(xuyl)}?:l with T; € RDayi eR

> z* the new point z* € RP,
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Nearest Neighbors

» S = {(xzayl)}?ZI with T; € RDayi eR

> z* the new point z* € RP,

> y. the predicted output y. = f(z*) where

.....
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Nearest Neighbors

» S = {(xzayl)}?ZI with T; € RDayi eR

> z* the new point z* € RP,

> y. the predicted output y. = f(z*) where

.....

Computational cost O(nD): we compute n times the distance ||z — x|
that costs O(D)
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Nearest Neighbors

» S = {(xzayl)}?ZI with T; € RDayi eR
> z* the new point z* € RP,

> y. the predicted output y. = f(z*) where

Yy« =y; j=arg min |z — x|
1=1,...,n

Computational cost O(nD): we compute n times the distance ||z — x|
that costs O(D)

In general let d : RP x RP a distance on the input space, then

flx)=y; j=arg 471{1111 d(x, ;)
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Extensions

Nearest Neighbor takes y* is the same of the closest point to z* in S.

Area (m?) | Price (€)

T93 = 255 | yo3 = 274,600
Tog4 = 264 Yoqa = 324, 900
Xo5 = 310 Yos = 311, 200
Tog = 480

yoe = 515,400

x10°
6%

0 L L L L L L ,
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Nearest Neighbor takes y* is the same of the closest point to z* in S.

Area (m?) | Price (€)

X9z = 255 Yoz = 274, 600
Tos = 264 | yos = 324,900
Tos = 310 | yo5 = 311,200
Tog = 480

Yo = 515, 400

X
60

10°

Extensions

Can we do better? (for example using more points)
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K-Nearest Neighbors

K-Nearest Neighbor: y* is the mean of the values of the K closest
point to z* in S. If K = 3 we have

274,600 + 324,900 + 311, 200

* 2 = 303,600
63<105
Area (m?) | Price (€) st °
: : |
o3 = 255 Yo3 = 274, 600 o ©g
Toa = 264 | you = 324,900 o o0 °
z95 = 310 | y95 = 311,200 J o Q?‘jjof 8
9 = 480 Yoe = 515,400 8%@%00 o
Al
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K-Nearest Neighbors

K-Nearest Neighbor: y* is the mean of the values of the K closest
point to z* in S. If K = 3 we have

274,600 + 324,900 + 311, 200

* . = 303, 600
63<105
Area (m?) | Price (€) st °
: : i
o3 = 255 Yo3 = 274, 600 o ©g
Tos = 264 | you = 324,900 3 o0 *®
z95 = 310 | y95 = 311,200 J o Q?‘jjof 8
9 = 480 Yoe = 515,400 8%@%00 o
L

0 L L L L L L ,
50 100 150 200 250 300 350 400 450 500
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K-Nearest Neighbors

> S ={(2i,yi)}ioy with z; € RP,y; € R
» z* the new point z* € RP,
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K-Nearest Neighbors

> S ={(2i,yi)}ioy with z; € RP,y; € R
» z* the new point z* € RP,
» Let K be an integer K << n,
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vV v vvY

K-Nearest Neighbors

S = {(xs,yi) 7=y with z; € RP,y; € R
z* the new point 2* € RP,
Let K be an integer K << n,

Ji,- -+, Ji defined as j; = argmin;eqy . oy [|2* — ;]| and

jt = arg minie{l)‘_,m}\{jlwyjtil} ||13* — 1'1” for t € {2, . 7K},
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vV v vvY

v

K-Nearest Neighbors

S = {(xs,yi) 7=y with z; € RP,y; € R
z* the new point 2* € RP,
Let K be an integer K << n,

Ji,- -+, Ji defined as j; = argmin;eqy . oy [|2* — ;]| and

jt = arg minie{l)‘_wn}\{jlwyjtil} ||13* — 1'1” for t € {2, . 7K},

predicted output

y*:% Z Yi

i€{j1,.Jr }

MLCC 2017
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K-Nearest Neighbors (cont.)

MLCC 2017
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K-Nearest Neighbors (cont.)

1 K
f(.T) = E Zyji
i=1

» Computational cost O(nD + nlogn): compute the n distances
|z — a;|| for i = {1,...,n} (each costs O(D)). Order them
O(nlogn).

MLCC 2017
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K-Nearest Neighbors (cont.)

1 K
f(.’L') = E Zyji
i=1

» Computational cost O(nD + nlogn): compute the n distances
|z — a;|| for i = {1,...,n} (each costs O(D)). Order them
O(nlogn).

» General Metric d f is the same, but j1,...,jx are defined as
J1 = argmingeqy . ny d(x, ;) and
jt = arg minie{l,...,n}\{jl,...,jt,l} d(z,x;) fort € {2,..., K}
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Parzen Windows

K-NN puts equal weights on the values of the selected points.

MLCC 2017
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Parzen Windows

K-NN puts equal weights on the values of the selected points.
Can we generalize it?
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Parzen Windows

K-NN puts equal weights on the values of the selected points.

Can we generalize it?
Closer points to z* should influence more its value

MLCC 2017
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Parzen Windows

K-NN puts equal weights on the values of the selected points.

Can we generalize it?
Closer points to z* should influence more its value
PARZEN WINDOWS:

fa) = SLUTE

where k is a similarity function
> k(z,2') >0 for all z,2’ € RP
> k(z,2’) = 1 when ||z —2/|| = 0
> k(x,2') = 0 when ||z — 2'|| = o0

MLCC 2017
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Parzen Windows

Examples of k&
> ki(z, ') = sign (1 - ”z;—z'H) with a o >0
+

v

ko(z,2') = (1 - M) witha o >0
+

v

ks(z,z') = (1 - HJB;—§/”2)+ witha ¢ >0

’
_llz—a)?

> ky(z,2’)=e " 27 withao >0

’
|lz—=2]|

> ks(z,2’)=e"" o  withao>0

— ki
— k2
— k3
— k4
— k5

1 2 3
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K-NN example

K-Nearest neighbor depends on K.

When K =1

-1.51

0.5

-0.5

34
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K-NN example

K-Nearest neighbor depends on K.
When K = 2
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K-NN example

K-Nearest neighbor depends on K.

When K = 3

-1.51

0.5

-0.5

36
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K-NN example

K-Nearest neighbor depends on K.

When K =4

1.5

-1.51

0.5

-0.5
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K-NN example

K-Nearest neighbor depends on K.

When K =5

1.5

-1.51

0.5

-0.5

38

MLCC 2017



K-NN example

K-Nearest neighbor depends on K.

When K =9
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K-NN example

K-Nearest neighbor depends on K.

When K =15
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K-NN example

K-Nearest neighbor depends on K.
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Changing K the result changes a lot! How to select K7?
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Outline

From Bias-Variance to Cross-Validation

MLCC 2017
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Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and

X =(z],...,2)).

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

MLCC 2017
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Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and
X =(z],...,2)).

rrn

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

The expected loss Ek is

Ex =EsE, (y — fs,x(z))?
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Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and
X =(z],...,2)).

rrn

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

The expected loss Ek is

Ex =EsE, (y — fs,x(z))?

Optimal hyperparameter K* should minimize Ek
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Optimal choice for the Hyper-parameters

> S = (z;,y;)", training set. Name Y = (y1,...,y,) and
X =(z],...,2)).

rrn

» K € N hyperparameter of the learning algorithm
> fs.x learned function (depends on S and K)

The expected loss Ek is

Ex =EsE, (y — fs,x(z))?

Optimal hyperparameter K* should minimize Ek

K* = arg min £
gKEK
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Optimal choice for the Hyper-parameters (cont.)

Optimal hyperparameter K* should minimize £k

MLCC 2017
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Optimal choice for the Hyper-parameters (cont.)

Optimal hyperparameter K* should minimize £k

K* = arg min £
gKeK

MLCC 2017
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Optimal choice for the Hyper-parameters (cont.)

Optimal hyperparameter K* should minimize £k
K* = in &
g iy i

Ideally! (In practice we don't have access to the distribution)

» We can still try to understand the above minimization problem: does
a solution exists? What does it depend on?

> Yet, ultimately, we need something we can compute!

MLCC 2017 49



Example: regression problem

Define the pointwise expected loss

Ex(z) = EsEyu(y — fo.x(2))?

MLCC 2017
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Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().

MLCC 2017
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Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
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Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02
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Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02
Now Exc(2) = EsEy . (y — fs.x(2))?

MLCC 2017
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Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02
Now Ex (z) = EsByp.(y — fs,k (2))? = EsEyo(fu(2) + 6 — fs,x())?

MLCC 2017
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Example: regression problem

Define the pointwise expected loss
Ex(x) =EsEy,(y — fs.x(@))?

By definition £ = E.Ek ().
Regression setting:
» Regression model y = f.(z) + 0
» E§ =0, E6? =02
Now Ex (z) = BsBy o (y — fs,k(2))? = BsEyo(f2(x) + 6 — fs x(2))?
that is
Ex(x) = Es(fu(2) = fsx(2))’ +0°

MLCC 2017
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fox(z Zf* x)

lEK

MLCC 2017
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fox(z Zf* x)

lEK

Note that fg x(z) = Ey|me,K(37)-

MLCC 2017
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

for() = 2 3 ful)

leK,
Note that f&K(JC) = Eyme,K(x).
Consider
Ex () = (fulz) = Ex fs k(1)) + Es(fs.rc(x) = fs,x(x))* + 0”
bias variance
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fs k(@ Zf* (1)

leK

Note that fs x(z) = Ey|me,K(x)'
Consider

Exc() = (&) = Ex s () + 7aBx 3 Byl = fula))? +

K
bias €K,

g

variance

MLCC 2017

60



Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

fox(z Zf* x)

lEK

Note that fS,K(;(;) = Ey|fo,K(l‘).

Consider 2
Ex(x) = (folx) — Ex fs.x(x))* + % e

—

variance

bias

MLCC 2017
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Errors

Bias Variance trade-off

Variance Bias

MLCC 2017
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How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:

MLCC 2017
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How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:

> an optimal parameter exists and

MLCC 2017
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How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:
» an optimal parameter exists and

» it depends on the noise and the unknown target function.

MLCC 2017
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How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:
» an optimal parameter exists and

» it depends on the noise and the unknown target function.

How to choose K in practice?

MLCC 2017
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How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:
» an optimal parameter exists and

» it depends on the noise and the unknown target function.

How to choose K in practice?

» ldea: train on some data and validate the parameter on new unseen
data as a proxy for the ideal case.
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For each K

Hold-out Cross-validation

MLCC 2017
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Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

MLCC 2017
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Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fTK( ))2

MLCC 2017
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Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fTK( ))2

MLCC 2017

71



Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fT K( ))2
3. Select K that minimize Ex.

MLCC 2017
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Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'

5 \V| Zx yEV(y fT K( ))2
3. Select K that minimize Ex.

The above procedure can be repeated to augment stability and K
selected to minimize error over trials.

MLCC 2017
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Hold-out Cross-validation

For each K
1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V'
5 \V| Zac yEV(y fTK( ))2
3. Select K that minimize .

The above procedure can be repeated to augment stability and K
selected to minimize error over trials.

There are other related parameter selection methods (k-fold cross
validation, leave-one out...).

MLCC 2017 4



Error

0.25

0.2

0.15

0.1

0.05

Training vs. validation error

Training and Validation Error behavior

T=50% S; n=200
T T T T T T
Validation error
—— Training error
. . . . . .
8 10 12 14 16 18
K
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Training and Validation Error behavior

Training vs. validation error
T=50% S; n=200
T

Error

T
Validation error
Training error

2 4 6 8 10 12 14 16 18 20
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Wrapping up

In this class we made our first encounter with learning algorithms (local
methods) and the problem of tuning their parameters (via bias-variance
trade-off and cross-validation) to avoid overfitting and achieve
generalization.
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Next Class

High Dimensions: Beyond local methods!

1 dimension:
o 10 positions
[ ]

2 tﬁnwnsivus:<
100 positions
L]

3 dimensions:
» 000 positions!

MLCC 2017
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