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About this class

1. Introduce a basic class of learning methods, namely local methods.

2. Discuss the fundamental concept of bias-variance trade-off to
understand parameter tuning (a.k.a. model selection)
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Outline

Learning with Local Methods

From Bias-Variance to Cross-Validation
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The problem

What is the price of one house given its area?

Start from data...

Area (m2) Price (AC)
x1 = 62 y1 = 99, 200
x2 = 64 y2 = 135, 700
x3 = 65 y3 = 93, 300
x4 = 66 y4 = 114, 000
...

...
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Let S the houses example dataset (n = 100)

S = {(x1, y1), . . . , (xn, yn)}

Given a new point x∗ we want to predict y∗ by means of S.
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Example

Let x∗ a 300m2 house.

Area (m2) Price (AC)
...

...
x93 = 255 y93 = 274, 600
x94 = 264 y94 = 324, 900
x95 = 310 y95 = 311, 200
x96 = 480 y96 = 515, 400
...
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Nearest Neighbors

Nearest Neighbor: y∗ is the same of the closest point to x∗ in S.

y∗ = 311, 200
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Nearest Neighbors

I S = {(xi, yi)}ni=1 with xi ∈ RD, yi ∈ R

I x∗ the new point x∗ ∈ RD,

I y∗ the predicted output y∗ = f̂(x∗) where

y∗ = yj j = arg min
i=1,...,n

‖x− xi‖

Computational cost O(nD): we compute n times the distance ‖x− xi‖
that costs O(D)

In general let d : RD × RD a distance on the input space, then

f(x) = yj j = arg min
i=1,...,n

d(x, xi)
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Extensions

Nearest Neighbor takes y∗ is the same of the closest point to x∗ in S.

Area (m2) Price (AC)
...

...
x93 = 255 y93 = 274, 600
x94 = 264 y94 = 324, 900
x95 = 310 y95 = 311, 200
x96 = 480 y96 = 515, 400
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Can we do better? (for example using more points)
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K-Nearest Neighbors

K-Nearest Neighbor: y∗ is the mean of the values of the K closest
point to x∗ in S. If K = 3 we have

y∗ =
274, 600 + 324, 900 + 311, 200

3
= 303, 600

Area (m2) Price (AC)
...

...
x93 = 255 y93 = 274, 600
x94 = 264 y94 = 324, 900
x95 = 310 y95 = 311, 200
x96 = 480 y96 = 515, 400
...

...

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
x 10

5

MLCC 2017 20



K-Nearest Neighbors

K-Nearest Neighbor: y∗ is the mean of the values of the K closest
point to x∗ in S. If K = 3 we have

y∗ =
274, 600 + 324, 900 + 311, 200

3
= 303, 600

Area (m2) Price (AC)
...

...
x93 = 255 y93 = 274, 600
x94 = 264 y94 = 324, 900
x95 = 310 y95 = 311, 200
x96 = 480 y96 = 515, 400
...

...

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
x 10

5

MLCC 2017 21



K-Nearest Neighbors

I S = {(xi, yi)}ni=1 with xi ∈ RD, yi ∈ R
I x∗ the new point x∗ ∈ RD,

I Let K be an integer K << n,

I j1, . . . , jK defined as j1 = argmini∈{1,...,n} ‖x∗ − xi‖ and
jt = argmini∈{1,...,n}\{j1,...,jt−1} ‖x∗ − xi‖ for t ∈ {2, . . . ,K},

I predicted output

y∗ =
1

K

∑
i∈{j1,...,jK}

yi
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K-Nearest Neighbors (cont.)

f(x) =
1

K

K∑
i=1

yji

I Computational cost O(nD + n log n): compute the n distances
‖x− xi‖ for i = {1, . . . , n} (each costs O(D)). Order them
O(n log n).

I General Metric d f is the same, but j1, . . . , jK are defined as
j1 = argmini∈{1,...,n} d(x, xi) and
jt = argmini∈{1,...,n}\{j1,...,jt−1} d(x, xi) for t ∈ {2, . . . ,K}
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Parzen Windows

K-NN puts equal weights on the values of the selected points.

Can we generalize it?
Closer points to x∗ should influence more its value
PARZEN WINDOWS:

f̂(x) =

∑n
i=1 yik(x, xi)∑n
i=1 k(x, xi)

where k is a similarity function

I k(x, x′) ≥ 0 for all x, x′ ∈ RD

I k(x, x′)→ 1 when ‖x− x′‖ → 0

I k(x, x′)→ 0 when ‖x− x′‖ → ∞
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Parzen Windows

Examples of k

I k1(x, x
′) = sign

(
1− ‖x−x

′‖
σ

)
+

with a σ > 0

I k2(x, x
′) =

(
1− ‖x−x

′‖
σ

)
+

with a σ > 0

I k3(x, x
′) =

(
1− ‖x−x

′‖2
σ2

)
+

with a σ > 0

I k4(x, x
′) = e−

‖x−x′‖2

2σ2 with a σ > 0

I k5(x, x
′) = e−

‖x−x′‖
σ with a σ > 0
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K-NN example

K-Nearest neighbor depends on K.
When K = 1
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−1.5
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1.5

Changing K the result changes a lot! How to select K?
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K-NN example
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K-NN example

K-Nearest neighbor depends on K.
When K = 3
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K-NN example

K-Nearest neighbor depends on K.
When K = 4
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K-NN example

K-Nearest neighbor depends on K.
When K = 5
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K-NN example

K-Nearest neighbor depends on K.
When K = 9
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K-NN example

K-Nearest neighbor depends on K.
When K = 15
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Outline

Learning with Local Methods

From Bias-Variance to Cross-Validation
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Optimal choice for the Hyper-parameters

I S = (xi, yi)
n
i=1 training set. Name Y = (y1, . . . , yn) and

X = (x>1 , . . . , x
>
n ).

I K ∈ N hyperparameter of the learning algorithm

I f̂S,K learned function (depends on S and K)

The expected loss EK is

EK = ESEx,y(y − f̂S,K(x))2

Optimal hyperparameter K∗ should minimize EK

K∗ = arg min
K∈K
EK
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Optimal choice for the Hyper-parameters (cont.)

Optimal hyperparameter K∗ should minimize EK

K∗ = arg min
K∈K
EK

Ideally! (In practice we don’t have access to the distribution)

I We can still try to understand the above minimization problem: does
a solution exists? What does it depend on?

I Yet, ultimately, we need something we can compute!
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Example: regression problem

Define the pointwise expected loss

EK(x) = ESEy|x(y − f̂S,K(x))2

By definition EK = ExEK(x).
Regression setting:

I Regression model y = f∗(x) + δ

I Eδ = 0, Eδ2 = σ2

Now EK(x) = ESEy|x(y − f̂S,K(x))2 = ESEy|x(f∗(x) + δ − f̂S,K(x))2

that is
EK(x) = ES(f∗(x)− f̂S,K(x))2 + σ2

. . .
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I Eδ = 0, Eδ2 = σ2

Now EK(x) = ESEy|x(y − f̂S,K(x))2 = ESEy|x(f∗(x) + δ − f̂S,K(x))2

that is
EK(x) = ES(f∗(x)− f̂S,K(x))2 + σ2

. . .
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

f̃S,K(x) =
1

K

∑
l∈Kx

f∗(xl)

Note that f̃S,K(x) = Ey|xf̂S,K(x).
Consider . . .
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

f̃S,K(x) =
1

K

∑
l∈Kx

f∗(xl)

Note that f̃S,K(x) = Ey|xf̂S,K(x).
Consider

EK(x) = (f∗(x)− EX f̃S,K(x))2︸ ︷︷ ︸
bias

+ES(f̃S,K(x)− f̂S,K(x))2 + σ2︸ ︷︷ ︸
variance

. . .
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

f̃S,K(x) =
1

K

∑
l∈Kx

f∗(xl)

Note that f̃S,K(x) = Ey|xf̂S,K(x).
Consider

EK(x) = (f∗(x)− EX f̃S,K(x))2︸ ︷︷ ︸
bias

+
1

K2
EX

∑
l∈Kx

Eyl|xl(yl − f∗(xl))
2 + σ2

︸ ︷︷ ︸
variance

. . .
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Bias Variance trade-off for K-NN

Define the noisyless K-NN (it is ideal!)

f̃S,K(x) =
1

K

∑
l∈Kx

f∗(xl)

Note that f̃S,K(x) = Ey|xf̂S,K(x).
Consider

EK(x) = (f∗(x)− EX f̃S,K(x))2︸ ︷︷ ︸
bias

+
σ2

K
+ σ2︸ ︷︷ ︸

variance

. . .
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Bias Variance trade-off

K

Errors
Variance Bias
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How to choose the hyper-parameters

Bias-Variance trade-off is theoretical, but shows that:

I an optimal parameter exists and

I it depends on the noise and the unknown target function.

How to choose K in practice?

I Idea: train on some data and validate the parameter on new unseen
data as a proxy for the ideal case.
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Hold-out Cross-validation

For each K

1. shuffle and split S in T (training) and V (validation)

2. train the algorithm on T and compute the empirical loss on V
ÊK = 1

|V |
∑
x,y∈V (y − f̂T,K(x))2

3. Select K̂ that minimize ÊK .

The above procedure can be repeated to augment stability and K
selected to minimize error over trials.

There are other related parameter selection methods (k-fold cross
validation, leave-one out...).
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Training and Validation Error behavior
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Wrapping up

In this class we made our first encounter with learning algorithms (local
methods) and the problem of tuning their parameters (via bias-variance
trade-off and cross-validation) to avoid overfitting and achieve
generalization.
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Next Class

High Dimensions: Beyond local methods!
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