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Matrix factorisation models

≈ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix factorisation models

for dimensionality reduction (coding, low-dimensional embedding)

≈

9



Matrix factorisation models

for unmixing (source separation, latent topic discovery)
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Matrix factorisation models

for interpolation (collaborative filtering, image inpainting)
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Nonnegative matrix factorisation
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I data V and factors W, H have nonnegative entries.

I nonnegativity of W ensures interpretability of the dictionary, because
patterns wk and samples vn belong to the same space.

I nonnegativity of H tends to produce part-based representations, because
subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark Nature paper by Lee and Seung (1999)
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49 images among 2429 from MIT’s CBCL face dataset
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PCA dictionary with K = 25

red pixels indicate negative values
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NMF dictionary with K = 25

experiment reproduced from (Lee and Seung, 1999)
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NMF for latent semantic analysis
(Lee and Seung, 1999; Hofmann, 1999)
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
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they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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NMF for hyperspectral unmixing
(Berry, Browne, Langville, Pauca, and Plemmons, 2007)

2

Fig. 1. Hyperspectral imaging concept.

I. INTRODUCTION

Hyperspectral cameras [1]–[11] contribute significantly to earth observation and remote sensing [12],

[13]. Their potential motivates the development of small, commercial, high spatial and spectral resolution

instruments. They have also been used in food safety [14]–[17], pharmaceutical process monitoring and

quality control [18]–[22], and biomedical, industrial, and biometric, and forensic applications [23]–[27].

HSCs can be built to function in many regions of the electro-magnetic spectrum. The focus here is

on those covering the visible, near-infrared, and shortwave infrared spectral bands (in the range 0.3µm

to 2.5µm [5]). Disregarding atmospheric effects, the signal recorded by an HSC at a pixel is a mixture

of light scattered by substances located in the field of view [3]. Fig. 1 illustrates the measured data.

They are organized into planes forming a data cube. Each plane corresponds to radiance acquired over a

reproduced from (Bioucas-Dias et al., 2012)
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NMF for audio spectral unmixing
(Smaragdis and Brown, 2003)

11 

Non-Negative Matrix Factorization 

! All factors are positive-valued:  
! Resulting reconstruction is additive 
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NMF as a constrained minimisation problem

Minimise a measure of fit between V and WH, subject to nonnegativity:

min
W,H≥0

D(V|WH) =
∑
fn

d([V]fn|[WH]fn),

where d(x |y) is a scalar cost function, e.g.,

I squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)

I Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)

I Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)

I α-divergence (Cichocki et al., 2008)

I β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)

I Bregman divergences (Dhillon and Sra, 2005)

I and more in (Yang and Oja, 2011)

Regularisation terms often added to D(V|WH) for sparsity, smoothness,
dynamics, etc.
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Common NMF algorithm design

I Block-coordinate update of H given W(i−1) and W given H(i).

I Updates of W and H equivalent by transposition:

V ≈WH⇔ VT ≈ HTWT

I Objective function separable in the columns of H or the rows of W:

D(V|WH) =
∑
n

D(vn|Whn)

I Essentially left with nonnegative linear regression:

min
h≥0

C (h)
def
= D(v|Wh)

Numerous references in the image restoration literature. e.g., (Richardson, 1972;
Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986; De Pierro, 1993)
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Majorisation-minimisation (MM)

Build G (h|h̃) such that G (h|h̃) ≥ C (h) and G (h̃|h̃) = C (h̃).
Optimise (iteratively) G (h|h̃) instead of C (h).
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Majorisation-minimisation (MM)

I Finding a good & workable local majorisation is the crucial point.

I For most the divergences mentioned, Jensen and tangent inequalities are
usually enough.

I In many cases, leads to multiplicative algorithms such that

hk = h̃k

(
∇−

hk
C (h̃)

∇+
hk
C (h̃)

)γ
where
I ∇hkC(h) = ∇−

hk
C(h)−∇+

hk
C(h) and the two summands are nonnegative

I γ is a divergence-specific scalar exponent.

I More details about MM in (Lee and Seung, 2001; Févotte and Idier, 2011;

Yang and Oja, 2011).
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How to choose a right measure of fit ?

I Squared Euclidean distance is a common default choice.

I Underlies a Gaussian additive noise model such that

vfn = [WH]fn + εfn.

Can generate negative values – not very natural for nonnegative data.

I Many other options.

Select a right divergence (for a specific problem) by

I comparing performances, given ground-truth data.

I assessing the ability to predict missing/unseen data (interpolation,
cross-validation).

I probabilistic modelling:

D(V|WH) = − log p(V|WH) + cst
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How to choose a right measure of fit ?

I Let V ∼ p(V|WH) such that E[V|WH] = WH

I then the following correspondences apply with

D(V|WH) = − log p(V|WH) + cst

data support distribution/noise divergence examples

real-valued additive Gaussian squared Euclidean many
integer multinomial Kullback-Leibler word counts
integer Poisson generalised KL photon counts

nonnegative
multiplicative
Gamma

Itakura-Saito spectral data

generally
nonnegative

Tweedie β-divergence
generalises
above models
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Piano toy example

!!!! !!!! !!!! !!!!" ##### $
(MIDI numbers : 61, 65, 68, 72)

Figure: Three representations of data.
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Piano toy example
IS-NMF on power spectrogram with K = 8
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Piano toy example
KL-NMF on magnitude spectrogram with K = 8
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Audio restoration
Louis Armstrong and His Hot Five
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Audio restoration
Louis Armstrong and His Hot Five

Original mono =
Accompaniment︸ ︷︷ ︸

Comp. 1,9

+ Brass︸ ︷︷ ︸
Comp. 2,3,5−8

+ Trombone︸ ︷︷ ︸
Comp. 4

+ Noise︸ ︷︷ ︸
Comp. 10

Original mono denoised

Original denoised & upmixed to stereo

31



Audio bandwidth extension
(Sun and Mazumder, 2013)

Y =

V = 

Full-band training samples Band-limited samples

adapted from (Sun and Mazumder, 2013)
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Audio bandwidth extension
(Sun and Mazumder, 2013)

AC/DC example

band-limited data (Back in Black) training data (Highway to Hell)

bandwidth extended ground truth

Examples from http: // statweb. stanford. edu/ ~ dlsun/ bandwidth. html , used with
permission from the author. 33
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Multichannel IS-NMF
(Ozerov and Févotte, 2010)

+

+

Sources S NMF: W H Mixing system A

Mixture X

Multichannel NMF problem:    Estimate W, H and A from X

noise 1

noise 2

I Best scores on the underdetermined speech and music separation task at the

Signal Separation Evaluation Campaign (SiSEC) 2008.
I IEEE Signal Processing Society 2014 Best Paper Award.

34



User-guided multichannel IS-NMF
(Ozerov, Févotte, Blouet, and Durrieu, 2011)

I the decomposition is guided by the operator: source activation time-codes
are input to the separation system.

I set forced zeros in H when a source is silent.
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