From Bandits to Experts: A Tale of Domination and Independence

Nicolò Cesa-Bianchi

Universita degli Studi di Milano `

From Bandits to Experts: A Tale of Domination and Independence

Nicolò Cesa-Bianchi

Universita degli Studi di Milano `

Joint work with:

Noga Alon Ofer Dekel Tomer Koren

Theory of repeated games

James Hannan (1922–2010)

David Blackwell (1919–2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent

Zero-sum 2-person games played more than once

$N \times M$ known loss matrix over \mathbb{R}

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round $t = 1, 2, \ldots$

- Player chooses action i_t and opponent chooses action y_t
- The player suffers loss $\ell(i_t, y_t)$ (= gain of opponent)

Player can learn from opponent's history of past choices y_1, \ldots, y_{t-1}

Prediction with expert advice

Volodya Vovk Manfred Warmuth

Play an unknown loss matrix

Opponent's moves y_1, y_2, \ldots define a sequential prediction problem with a time-varying loss function $\ell(i_t, y_t) = \ell_t(i_t)$

 $t = 1$ $t = 2$...

.

 $\frac{1}{2} \begin{vmatrix} \ell_1(1) & \ell_2(1) & \dots \\ \ell_1(2) & \ell_2(2) & \dots \end{vmatrix}$

 $\ell_1(2)$

. . .

 $N \mid \ell_1(N) \mid \ell_2(N)$

. . .

Playing the experts game

N actions

? ? ? ? ? ? ? ? ? ?

For $t = 1, 2, ...$

1 Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, ..., N$ (hidden from the player)

Playing the experts game

N actions

?) (?) (?) (?) (?) (?) (?) (?) (?)

For $t = 1, 2, ...$

- **1** Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, ..., N$ (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

Playing the experts game

N actions

$$
\begin{array}{cccccccc}\n7 & 3 & 2 & 4 & 1 & 6 & 7 & 4 & 9\n\end{array}
$$

For $t = 1, 2, ...$

- **1** Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, ..., N$ (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- **3** Player gets feedback information: $\ell_t = (\ell_t(1), \ldots, \ell_t(N))$

The loss process $\langle \ell_t \rangle_{t \geq 1}$ is deterministic and unknown to the (randomized) player I_1, I_2, \ldots

Oblivious regret minimization

$$
R_T \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1,\ldots,N}\sum_{t=1}^T \ell_t(i) \stackrel{want}{=} o(T)
$$

Lower bound using random losses

- Losses $\ell_t(i)$ are independent random coin flips $L_t(i) \in \{0, 1\}$
- For any player strategy

$$
E\left[\sum_{t=1}^T L_t(I_t)\right] = \frac{T}{2}
$$

• Then the expected regret is

$$
\mathbb{E}\left[\max_{\mathfrak{i}=1,\ldots,N}\sum_{t=1}^{T}\left(\frac{1}{2}-L_{\mathfrak{t}}(\mathfrak{i})\right)\right]=\left(1-o(1)\right)\sqrt{\frac{T\ln N}{2}}
$$

Exponentially weighted forecaster

At time t pick action $I_t = i$ with probability proportional to

$$
exp\left(-\eta\sum_{s=1}^{t-1}\ell_s(i)\right)
$$

the sum at the exponent is the total loss of action i up to now

N actions

$\begin{array}{cccc} (?) & (?) & (?) & (?) & (?) & (?) & (?) & (?) \end{array}$

For $t = 1, 2, ...$

1 Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, ..., N$ (hidden from the player)

N actions

$\begin{array}{ccccc} \textbf{?} & \textbf{()} & \textbf{()} & \textbf{()} & \textbf{()} & \textbf{()} & \textbf{()} \end{array}$

For $t = 1, 2, ...$

- **1** Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, ..., N$ (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

N actions

$\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} ? \end{pmatrix}$ $\begin{pmatrix} ?) \end{pmatrix}$ $\begin{pmatrix} ? \end{pmatrix}$ $\begin{pmatrix} ? \end{pmatrix}$ $\begin{pmatrix} ? \end{pmatrix}$ $\begin{pmatrix} ? \end{pmatrix}$

For $t = 1, 2, ...$

- **1** Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, ..., N$ (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- \bullet Player gets feedback information: Only $\ell_t(I_t)$ is revealed

N actions

$\begin{array}{cccc} (3) & (?) & (?) & (?) & (?) & (?) & (?) & (?) \end{array}$

For $t = 1, 2, ...$

- **1** Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, ..., N$ (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- \bullet Player gets feedback information: Only $\ell_t(I_t)$ is revealed

Many applications

Ad placement, dynamic content adaptation, routing, online auctions

Comment

Relationships between actions [Mannor and Shamir, 2011]

A graph of relationships over actions

A graph of relationships over actions

A graph of relationships over actions

Recovering expert and bandit settings

Exponentially weighted forecaster — Reprise

Player's strategy [Alon, C-B, Gentile, Mannor, Mansour and Shamir, 2013] $\mathbb{P}_{t}(I_{t} = i) \propto \exp \left(-\eta \sum_{ }^{t-1} \right)$ $s=1$ $\ell_{s}(i)$ \setminus $i = 1, \ldots, N$ $\ell_{\mathfrak{t}}(\mathfrak{i}) =$ $\sqrt{ }$ I \mathcal{L} $\ell_{\mathbf{t}}(\mathfrak{i})$ $\frac{\partial \mathbf{r}(t)}{\partial \mathbf{P}_t(t_1(i) \text{ observed})}$ if $\ell_t(i)$ is observed 0 otherwise

Regret bounds

Analysis (undirected graphs)

$$
R_T \leqslant \frac{ln\,N}{\eta} + \frac{\eta}{2} \, \sum_{t=1}^T \sum_{i=1}^N \frac{P_t(I_t=i)}{P_t(I_t=i) + \sum_{j \in N_G(i)} P_t(I_t=j)}
$$

Lemma

For any undirected graph $G = (V, E)$ and for any probability assignment p_1, \ldots, p_N over its vertices

$$
\sum_{i=1}^N \frac{p_i}{p_i + \sum_{j \in N_G(i)} p_j} \leqslant \alpha(G)
$$

 $\alpha(G)$ is the independence number of G (largest subset of V such that no two distinct vertices in it are adjacent in G)

Regret bounds

Analysis (undirected graphs)

$$
R_T \leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \sum_{t=1}^T \alpha(G) = \, \sqrt{T \alpha(G) \ln N} \qquad \text{by choosing } \eta
$$

Minimax rate

The general bound is tight: $R_T = \Theta\left(\sqrt{\mathsf{T} \alpha(G) \ln N}\right)$

More general feedback models

Directed **Interventions**

Old and new examples

Experts Bandits

Cops & Robbers Revealing Action

Exponentially weighted forecaster with exploration

Player's strategy [Alon, C-B, Dekel and Koren, 2015]

$$
\begin{aligned}\n\bullet \ \mathbb{P}_t(I_t = i) &\propto \ \frac{1 - \gamma}{Z_t} \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) + \gamma \, U_G \qquad i = 1, \dots, N \\
\bullet \ \widehat{\ell}_t(i) &= \left\{ \begin{array}{cl} \frac{\ell_t(i)}{\mathbb{P}_t\big(\ell_t(i) \text{ observed}\big)} & \text{if } \ell_t(i) \text{ is observed} \\ 0 & \text{otherwise} \end{array} \right.\n\end{aligned}
$$

 U_G is uniform distribution supported on a subset of V

A characterization of feedback graphs

A vertex of G is:

- observable if it has at least one incoming edge (possibly a self-loop)
- strongly observable if it has either a self-loop or incoming edges from all other vertices
- weakly observable if it is observable but not strongly observable

- 3 is not observable
- 2 and 5 are weakly observable
- 1 and 4 are strongly observable

G is strongly observable

G is weakly observable

G is not observable $R_T = \Theta(T)$

Weakly dominating set

 $\delta(G)$ is the size of the smallest set that dominates all weakly observable nodes of G

Minimax regret

Presence of red loops does not affect minimax regret anect numitax reg
 $R_T = \Theta(\sqrt{T \ln N})$

With red loop: strongly observable with $\alpha(G) = N - 1$ $R_T = \Theta$ (\sqrt{NT})

Without red loop: weakly observable with $\delta(G) = 1$

 $R_T = \widetilde{\Theta}\left(T^{2/3}\right)$

The loss of action i at time t depends on the player's past m actions $\ell_t(i) \rightarrow L_t(I_{t-m}, \ldots, I_{t-1}, i)$

Adaptive regret

$$
R_T^{ada} = \mathbb{E}\left[\sum_{t=1}^T L_t(I_{t-m},\ldots,I_{t-1},I_t) - \min_{i=1,\ldots,N}\sum_{t=1}^T L_t(\underbrace{\mathfrak{i},\ldots,\mathfrak{i}}_{m \text{ times}},i)\right]
$$

$$
\mathbb{R}_{\tau}^{\text{add}} = \Theta(T^{2/3})
$$
\nMinimax rate (m > 0)

\n
$$
\mathbb{R}_{\tau}^{\text{ada}} = \Theta(T^{2/3})
$$

- An abstract, game-theoretic framework for studying a variety of sequential decisions problems
- Applicable to machine learning (e.g., binary classification) and online convex optimization settings
- Exponential weights can be replaced by polynomial weights (cfr. Mirror Descent for convex optimization)
- Connections to gambling, portfolio management, competitive analysis of algorithms

