MLCC 2015

ML applications

**=

Autonomous Driving

Google's modified Toyota Prius uses an array of sensors to newgate public mads without a human driver. Other components, not shown, include a GPS receiver and as inertial motion sensor. POSITION EXTMATOR A sensor mounted on the left rear wheel measures small movements made by the car and helps to accurately local its position on the map

Machine Learning

systems are trained on examples rather than being programmed

\$1.000

\$2,000

\$400

- OSK

The Economist

The data deluge

Use your voice to send messages, set reminders, search for information, and more.

MLCC

007-05-22 14:11 - News in English

2007-05-22 18:33 · News in English Soccer: Milan weighs attack options Gilardino tipped to lead the line, Inzaghi late card

2007-05-22 17:29 · News in English

5-22 16:27 · News in English

Wine wards off senile dementia

Treasury may sell all of Alitalia Formal bids for carrier due by July 2 007-05-22 15:58 · News in English Afghanistan: Rome cold on Bush call We respond to parliament, no one else, ' FM says

A glass a day stops mild impairment worsening, Italians say

Electronic nose sniffs asthma Device developed by Itaian researcher in Netherlands

Data challenges

big data - extract real knowledge from very large dimensional datasets

• computation, communication, privacy

small data - bridge the gap between biological and artificial intelligence (generalize from few supervised data)

- unsupervised, weakly supervised learning
- prior knowledge and task/data structure

Big data & unsupervised learning

Building High-level Features Using Large Scale Unsupervised Learning

Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeffrey Dean, and Andrew Y. Ng

Abstract

We consider the problem of building high-level, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder with pooling and local contrast normalization on a large dataset of images (the model has 1 billion connections, the dataset has 10 million 200x200 pixel images downloaded from the Internet). We train this network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containing a face or not. Control experiments show that this feature detector is robust not only to translation but also to scaling and out-of-plane rotation. We also find that the same network is sensitive to other high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained our network to obtain 15.8% accuracy in recognizing 20,000 object categories from ImageNet, a leap of 70% relative improvement over the previous state-of-the-art.

Appeared in: ICML 2012: 29th International Conference on Machine Learning, Edinburgh, Scotland, June, 2012.

but how do they relate with the course contents?

CLASS	DAY	TIME	SUBJECT
1	Mon 22	9:00 - 11:00	Introduction to Machine Learning
2	Mon 22	11:00 - 13:00	Local Methods and Model Selection
3	Mon 22	14:00 - 16:00	Laboratory - Local Methods for Classification
4	Tue 23	9:00 - 11:00	Regularization Networks I: Linear Models
5	Tue 23	11:00 - 13:00	Regularization Networks II: Kernels
6	Tue 23	14:00 - 16:00	Laboratory - Regularization Networks
-	Wed 24	9:00 - 12:00	Guest Talks - TBA
-	Wed 24	Afternoon	Free
7	Thu 25	9:00 - 11:00	Dimensionality Reduction and PCA
8	Thu 25	11:00 - 13:00	Variable Selection and Sparsity
9	Thu 25	14:00 - 16:00	Laboratory - PCA and Sparsity
10	Fri 26	9:00 - 11:00	Clustering
11	Fri 26	11:00 - 13:00	Applications of Machine Learning

medical image analysis: image segmentation

bioinformatics: gene selection

computer vision: object detection, object recognition, ...

human-machine interaction : action recognition, emotion recognition

video-surveillance: behavior analysis, pose detection

Goal: study and implement methods to automatically discriminate different tissues based on different enhancement curve types

Approach:

 learn from data basis signals and express the enhancement curves as linear combinations of those signals

$$\mathcal{D} = \{\phi_j, j = 1, \dots, p \mid \phi_j : X \to R \; \forall j\} \; \text{ with } \; p \leq \infty$$
$$K(x, x') = \sum_{j=1}^p \phi_j(x) \phi_j(x')$$

Dynamic Contrast Enhanced MRI analysis

the dictionary is learnt from data: $\min_{D,U} ||X - DU||^2 + \tau ||U||_1 \quad s.t. ||d_i||_2 \le 1$

regions.

Dynamic Contrast Enhanced MRI analysis

- Automatic segmentation is obtained by means of an unsupervised method: each voxel is represented by its code (the coefficients *u* providing the lower reconstruction error w.r.t. the learnt basis *D*)
- Codes are clustered in 7 main groups (following the expert prior)

manual annotation provided by the expert

automatic segmentation

MLCC

Goals:

- Design methods able to identify a gene signature, i.e., a panel of genes potentially interesting for further screening
- Learn the gene signatures, i.e., select the most discriminant subset of genes on the available data

A typical "-omics" scenario:

High dimensional data - Few samples per class

tenths of data - tenths of thousands genes
 → Variable selection

High risk of selection bias

- data distortion arising from the way the data are collected due to the small amount of data available
 - \rightarrow Model assessment needed

 $\min_{\beta \in R^p} ||Y - \beta X||^2 + \tau(||\beta||_1 + \epsilon ||\beta||_2^2)$

Consistency guaranteed - the more samples available the better the estimator

Multivariate - it takes into account many genes at once

Output: One-parameter family of nested lists with equivalent prediction ability and increasing correlation among genes

• $\epsilon \rightarrow 0$ minimal list of prototype genes

• $\epsilon_1 < \epsilon_2 < \epsilon_3 < \dots$ longer lists including correlated genes

Variable selection step (elastic net)

 $\min_{\beta \in R^p} ||Y - \beta X||^2 + \tau(||\beta||_1 + \epsilon ||\beta||_2^2)$

Classification step (OLS or RLS) $||Y - \beta X||_2^2 + \lambda ||\beta||_2^2$

for each ϵ we have to choose λ and τ

the combination prevents the elastic net shrinking effect

$$\begin{array}{rccc} \lambda & \to & (\lambda_1, \dots, \lambda_A) \\ \tau & \to & (\tau_1, \dots, \tau_B) \end{array}$$

the optimal pair (λ^*, τ^*) is one of the possible $A \cdot B$ pairs (λ, τ)

MLCC

Image understanding as a general problem is still unsolved

• today we are able to answer complex but specific questions such as object detection, image categorization, ...

Machine learning has been the key to solve this kind of problems:

- it deals with noise and intra-class variability by collecting appropriate data and finding suitable descriptions
- Notice that images are relatively easy to gather (but not to label!)
 Carry Recommechanical turk Contribution carry
- many large benchmark datasets (with some bias)

gathering data with some help - iCubWorld

MLCC

Object detection in images

object detection is in essence a binary classification problem

image regions of variable size are classified: *is it an instance of the object or not*?

unbalanced classes

 in this 380x220 px image we perform ~6.5x10⁵ tests and we should find only 11 positives

the training set contains

- images of positive examples (the object)
- negative examples (background)

machine learning applications

MLCC

There is a lot of prior knowledge coming from the computer vision literature (filters, features, ...)

- often it is easier and more effective to find explicit mappings towards high dimensional feature spaces
- feature selection has been used to get rid of redundancy and speed up computation

Image feature selection

rectangle features or **Haar-like features** (Viola & Jones) are one of the most effective representations of images for face detection

- size of the initial dictionary: a 19 x 19 px image is mapped into a 64.000-dim feature vector!
- feature selection may help us reducing the size and keeping only informative elements

Many image features have a characteristic internal structure

An image patch is divided in *regions* or *cells* and represented according to the specific description, then all representations are concatenated

Feature selection can be designed so to extract an entire group instead than a single feature

MLCC

an interesting study case: Eigenfaces

• Goal: represent face images for recognition purposes (*who's that face*?)

• build X - data matrix where each row is a face image (unfolded)

- PCA(X^TX): each eigenvector can be seen as an image, the *eigenface*;
- they are the directions in which the images differ from the mean image.
- eigenvectors with the largest eigenvalues are kept
- at run time an image is represented by projecting it onto the chosen directions
- many variants...
 - this simple idea is more appropriate for image matching
 - not robust to illumination and view-point changes

MLCC

Learning common patterns in temporal sequences

Behavior analysis

An application to video-surveillance

MLCC

Learning common patterns in temporal sequences

adaptive space quantization

P-spectrum kernel for sequences

$\phi_u^P(s) = |\{(v_1, v_2) : s = v_1 u v_2\}|$

where $u \in \mathcal{A}^P$, while v_1, v_2 are substrings such that $v_1 \in \mathcal{A}^{P_1}, v_2 \in \mathcal{A}^{P_2}$, and $P_1 + P_2 + P = |s|$.

The associated kernel between two strings s_1 and s_2 is defined as:

$$K_P(s_1, s_2) = \langle \phi^P(s_1), \phi^P(s_2) \rangle = \sum_{u \in \mathcal{A}^P} \phi^P_u(s_1) \phi^P_u(s_2)$$

String length independence is achieved with an appropriate normalization

 $\hat{K}_{P}(s_{1}, s_{2}) = \frac{K_{P}(s_{1}, s_{2})}{\sqrt{K_{P}(s_{1}, s_{1})}\sqrt{K_{P}(s_{2}, s_{2})}}$

HMI: iCub recognizing actions

MLCC

All Gestures You Can: A Memory Game

I. Gori, S.R. Fanello, G. Metta, F. Odone

Department of Robotics, Brain and Cognitive Sciences Istituto Italiano di Tecnologia Dipartimento di Informatica e Scienza dell'Informazione Università degli Studi di Genova

HMI: emotion recognition from body movements

Research Centre scientific and technological research /artistic research and creation /international education

- intermediate representations: dimensions suggested by psychologists, related to space occupation or the quality of motion
- gesture segmentation

Time

• multi-class classification of 6 emotions based on a combination of binary SVM classifiers

HUMANS VS. COMPUTER

MLCC

Learning the appropriate type of grasp

estimate the most likely grasps

estimate the hand posture vector

Semi-supervised pose classification

The capability of classifying people with respect to their orientation in space is important for a number of tasks

- An example is the analysis of collective activities, where the reciprocal orientation of people within a group is an important feature
- The typical approach relies on quantizing the possible orientations in 8 main angles
- Appearance changes very smoothly and labeling may

