
MLCC: Machine Learning Crash Course Spring 2014

Lecture 2- Local Methods and Bias Variance Trade-Off
Lecturer: F.Odone–L. Rosasco

First, we describe a simple yet efficient class of algorithms, the so called memory based
learning algorithms, based on the principle that nearby input points should have the sim-
ilar/same output. Then, we discuss the problem of tuning the learning parameters and
present the concept of Bias-Variance trade-off.

2.1 Nearest Neighbor

Consider a training set
S = {(x1, y1), . . . , (xn, yn)}.

Given an input x̄, let
i′ = arg min

i=1,...,n
‖x̄− xi‖2

and define the nearest neighbor (NN) estimator as

f̂(x̄) = yi′ .

Every new input point is assigned the same output as its nearest input in the training set. We
add few comments. First, while in the above definition we simply considered the Euclidean
norm, the method can be promptly generalized to consider other measure of similarity among
inputs. For example if the input are binary strings, i.e. X = {0, 1}D, one could consider the
Hamming distance

dH(x, x̄) =
1

D

D∑
j=1

1[xj 6=x̄j]

where xj is the j-th component of a string x ∈ X.
Second, the complexity of the algorithm for predicting any new point is O(nD)– recall that
the complexity of multiplying two D-dimensional vectors is O(D). Finally, we note that NN
can be fairly sensitive to noise.

2.2 K-Nearest Neighbor

Let dx̄ = (‖x̄− xi‖2)ni=1 be the array of distances of a new point x̄ to the input points in the
training set. Let sx̄ be the above array sorted in increasing order and Ix̄ the corresponding
vector of indices. Let Kx̄ = {I1

x̄, . . . , I
K
x̄ } be the array of the first K entries of Ix̄. The

K-nearest neighbor estimator (KNN) is defined as,

f̂(x̄) =
∑
i′∈Kx̄

yi′ .

2-1

MLCC Lecture 2 — Spring 2014

In classification KNN can be seen as a voting scheme among the K nearest neighbors and
K is taken to be odd to avoid ties. The parameter K controls the stability of the KNN
estimate: when K is small the algorithm is sensitive to the data (and simply reduces to
NN for K = 1). When K increases the estimator becomes more stable. In classification, it
eventually simply becomes the ratio of the number of elements for each class. The question
of how to best choose K will be the subject of a future discussion.

2.3 Parzen Windows

In KNN each of the K neighbors has equal weights in determining the output of a new point.
A more general approach is to consider estimators of the form,

f̂(x̄) =

∑n
i=1 yik(x̄, xi)∑n
i=1 k(x̄, xi)

,

where k : X ×X → [0, 1] is a suitable function, which can be seen as a similarity measure
on the input points. The function k defines a window around each point and is sometimes
called a Parzen window. A classification rule is obtained considering the sign of f̂(x̄).

Many examples of k depend on the distance ‖x − x′‖, x, x′ ∈ X. For example we can
consider

k(x′, x) = 1‖x−x′‖≤r.

This choice induce a Parzen window analogous to KNN, here the parameter K is replaced
by the radius r. More generally it is interesting to have a decaying weight for point which
are further away. For example considering

k(x′, x) = (1− ‖x− x′‖)+1‖x−x′‖≤r,

where (a)+ = a, if a > 0 and (a)+ = 0, otherwise. Another possibility is to consider fast
decaying functions such as a Gaussian

k(x′, x) = e−‖x−x
′‖2/2σ2

.

or an exponential

k(x′, x) = e−‖x−x
′‖/
√

2σ.

In all the above methods there is a parameter r or σ that controls the influence that each
neighbor has on the prediction.

2.4 High Dimensions

The following simple reasoning highlights a phenomenon which is typical of dealing with
high dimensional learning problems. Consider a unit cube in D dimensions, and a smaller
cube of edge e. How shall we choose e to capture 1% of the volume of the larger cube?
Clearly, we need e = D

√
.01. For example e = .63 for D = 10 and e = .95 for D = 100.

The edge of the small cube is virtually the same length of that of the large cube. The above
example illustrates how in high dimensions our intuition of neighbors and neighborhoods is
challenged.

2-2

MLCC Lecture 2 — Spring 2014

2.5 Tuning and Bias Variance Variance Decomposition

Here we study the question of how to choose the number of neighbors K in KNN: is there
an optimal choice of K? Can it be computed in practice? Most of the ideas and results in
the following generalize to a large class of learning algorithms beyond KNN. Indeed, many
(most) learning algorithms depend on one or more parameter controlling their performances.

For the sake of simplicity we consider a regression model

y = f∗(x) + δ,

where Eδ = 0 and Eδ2 = σ2. Moreover, we consider the least square loss function to measure
errors, so that the performance of the KNN algorithm is given by the expected loss

Ex,y(y − f̂K(x))2 = Ex Ey|x(y − f̂K(x))2︸ ︷︷ ︸
ε(K)

.

To get an insight on how to choose K, we analyze theoretically how this choice influences the
expected loss. In fact, in the following we simplify the analysis considering the performance
of KNN ε(K) at a given point x.

First, note that
ε(K) = σ2 + Ey|x(f∗(x)− f̂K(x))2,

where σ2 can be seen as an irreducible error term. Second, to study the latter term we
introduce the expected KNN algorithm,

Ey|xf̂K(x) =
1

K

∑
`∈Kx

f∗(x`).

We have

Ey|x(f∗(x)− f̂K(x))2 = (f∗(x)− Ey|xf̂K(x))2︸ ︷︷ ︸
Bias

+ Ey|x(Ey|xf̂K(x)− f̂K(x))2︸ ︷︷ ︸
V ariance

Finally, we have

ε(K) = σ2 + (f∗(x)− 1

K

∑
`∈Kx

f∗(x`))
2 +

σ2

K

2.6 The Bias Variance Trade-Off

We are ready to discuss the behavior of the (point-wise) expected loss of the KNN algorithm
as a function of K. As it is clear from the above equation, the variance decreases with K.
The bias is likely to increase with K, if the function f∗ is suitably smooth. Indeed, for small
K the few closest neighbors to x will have values close to f∗(x), so their average will be
close to f∗(x). Whereas, as K increases neighbors will be further away and their average
might move away from f∗(x). A larger bias variance is preferred when data are few/noisy
to achieve a better control of the variance, whereas the bias can be decreased as more data
become available, hence reducing the variance. For any given training set, the best choice
for K would be the one striking the optimal trade-off between bias and variance (that is the
value minimizing their sum).

2-3

MLCC Lecture 2 — Spring 2014

Figure 2.1. The Bias-Variance Tradeoff. In the KNN algorithm the parameter K controls the achieved
(model) complexity.

2.7 Cross Validation

While instructive, the above analysis is not directly useful in practice since the data distribu-
tion, hence the expected loss, is not accessible. In practice, data driven procedures are used
to find a proxy for the expected loss. The simplest such procedure is called hold-out cross
validation. Part of the training S set is hold-out, to compute a (holdout) error to be used
as a proxy of the expected error. An empirical bias variance trade-off is achieved choosing
the value of K that achieves minimum hold-out error. When data are scarce the hold-out
procedure, based on a simple ”two ways split” of the training set, might be unstable. In this
case, so called V -fold cross validation is preferred, which is based on multiple data splitting.
More precisely, the data are divided in V (non overlapping) sets. Each set is hold-out and
used to compute an hold-out error which is eventually averaged to obtained the final V -fold
cross validation error. The extreme case where V = n is called leave-one-out cross validation.

2-4

