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Machine Learning deals with systems that are trained from data rather than being ex-
plicitly programmed. Here we describe the data model considered in statistical learning
theory.

1.1 Data

The data, called training set, is a set of n input-output pairs,

S = {(x1, y1), . . . , (xn, yn)}.

Each pair is called an example. We consider the approach to machine learning based on the
so called learning from examples paradigm.

Given the training set, the goal is to learn a corresponding input-output relation. To
make sense of this task we have to postulate the existence of a model for the data. The
model should take into account the possible uncertainty in the task and in the data.

1.2 Probabilistic Data Model

The inputs belong to an input space X, we assume throughout that X ⊆ RD. The outputs
belong to an output space Y . We consider several possible situations: regression Y ⊆
R, binary classification Y = {−1, 1} and multi-category (multiclass) classification Y =
{1, 2, . . . , T}. The space X × Y is called the data space.

We assume there exists a fixed unknown data distribution p(x, y) according to which
the data are identically and independently distributed (i.i.d.). The probability distribu-
tion p models different sources of uncertainty. We assume that it factorizes as p(x, y) =
pX(x)p(y|x), where

• the conditional distribution p(y|x), see Figure 1.1, can be seen as a form of noise in the
output. For example, in regression the following model is often considered y = f ∗(x)+ε,
where f ∗ is a fixed unknown function and ε is random noise, e.g. standard Gaussian
N (0, σI), σ ∈ [0,∞). In classification, a noiseless situation corresponds to p(1|x) = 1
or 0 for all x.

• The marginal distribution pX(x) models uncertainty in the sampling of the input points.
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1.3 Loss Function and and Expected Risk

The goal of learning is to estimate the “best” input-output relation– rather than the whole
distribution p.

More precisely, we need to fix a loss function

` : Y × Y → [0,∞),

which is a (point-wise) measure of the error `(y, f(x)) we incur in when predicting f(x) in
place of y. Given a loss function, the ”best” input-output relation is the target function
f ∗ : X → Y minimizing the expected loss (or expected risk)

E(f) = E[`(y, f(x))] =

∫
dxdyp(x, y)`(y, f(x)).

which can be seen as a measure of the error on past as well as future data. The target
function cannot be computed since the probability distribution p is unknown. A (good)
learning algorithm should provide a solution that behaves similarly to the target function,
and predict/classify well new data. In this case, we say that the algorithm generalizes.

1.4 Stability, Overfitting and Regularization

A learning algorithm is a procedure that given a training set S computes an estimator fS.
Ideally an estimator should mimic the target function, in the sense that E(fS) ≈ E(f ∗).
The latter requirement needs some care since fS depends on the training set and hence is
random. For example one possibility is to require an algorithm to be good in expectation, in
the sense that

ESE(fS)− E(f ∗),

is small.
More intuitively, a good learning algorithm should be able to describe well (fit) the data,

and at the same time be stable with respect to noise and sampling. Indeed, a key to ensure
good generalization property is to avoid overfitting, that is having estimators which are highly
dependent on the data (unstable), possibly with a low error on the training set and yet a
large error on future data. Most learning algorithms depend one (or more) regularization
parameter that control the trade-off between data-fitting and stability. We broadly refer
to this class of approaches as regularization algorithms, their study is our main topic of
discussion.
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Figure 1.1. For each input x there is a distribution of possible outputs p(y|x).
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