|
MLCC
2014
Machine
Learning Crash Course
|
|
|
Dates
and
registration |
The
course
will be held on February 18th-21th, 2014 at DIBRIS
(University of Genoa, Italy)
Registration for the course is now closed.
We reached the number of required registration so the
course will take place.
See you @MLCC_2014!
|
Course
at
a Glance |
Machine Learning is a key to develop intelligent systems and
analyze data in science and engineering. Machine Learning
engines enable intelligent technologies such as Siri, Kinect or
Google self driving car, to name a few. At the same time,
Machine Learning methods help deciphering the information in our
DNA and make sense of the flood of information gathered on the
web, forming the basis of a new "Science of Data". This course
provides an introduction to the fundamental methods at the core
of modern Machine Learning. It covers theoretical foundations as
well as essential algorithms. Classes on theoretical and
algorithmic aspects are complemented by practical lab sessions.
This introductory course is suitable for
undergraduate/graduate students, as well as professionals.
L�apprendimento automatico sta emergendo come un campo
fondamentale per lo sviluppo di sistemi intelligenti e l�analisi
di dati nelle scienze naturali e in ingegneria. Sistemi basati
sull�apprendimento automatico sono alla base di tecnologie
intelligenti come Siri, Kinect o le macchine che si guidano da
sole sviluppate da Google. Allo stesso tempo, le tecniche di
apprendimento automatico costituiscono la base di una nuova
�Scienza dei Dati�, e sono ad esempio di aiuto nel decifrare
l�informazione contenuta nel DNA umano o nell'ordinare il flusso
incessante di informazioni proveniente da Internet. Questo corso
fornisce un'introduzione alle tecniche fondamentali che formano
il nucleo dell�apprendimento automatico moderno. Sono trattate
sia le basi teoriche, sia gli algoritmi fondamentali
dell�apprendimento automatico. Le lezioni di carattere teorico
sono complementate da sessioni pratiche in laboratorio.
Il corso � adatto a laureandi, laureati e professionisti
del settore.
|
Instructors |
Lorenzo Rosasco -- University
of Genova (also Istituto
Italiano di Tecnologia and Massachusetts
Institute
of Technology) lorenzo (dot) rosasco
(at) unige (dot) it
Francesca Odone -- University
of Genova, francesca (dot) odone
(at) unige (dot) it
|
Venue |
|
Syllabus
|
|
Classroom |
(Changed!) Room 710, 7th floor DIBRIS, via
Dodecaneso 35 , Genova (see here
for directions).
|
Credits
and Exam (optional)
|
A certificate attendance is
given after the course.
|
Prerequisites |
The course makes use of
basic notions and tools from calculus, linear algebra and
probability.
|
Reading
list and useful links
|
References:
- T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Prediction, Inference and Data Mining.
Springer Verlag, 2009
Further readings:
- T. Poggio and S. Smale. The Mathematics of Learning: Dealing
with Data. Notices of the AMS, 2003
Useful Links:
- MIT 9.520: Statistical Learning Theory and Applications, Fall
2013 (http://www.mit.edu/~9.520/).
- Stanford CS229 Machine Learning Autumn 2013 (http://cs229.stanford.edu).
See also the Coursera version (https://www.coursera.org/course/ml).
|