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These notes are an attempt to extract essential machine learning concepts for beginners. They a draft and will be updated. Likely
they won’t be typos free for a while. They are dry and lack examples to complement and illustrate the general ideas. Notably,
they also lack references, that will (hopefully) be added soon. The mathematical appendix is due to Andre Wibisono’s notes for
the math camp of the 9.520 course at MIT.
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ABSTRACT. Machine Learning has become a key to develop intelligent systems and analyze data in science
and engineering. Machine learning engines enable systems such as Siri, Kinect or Google self driving car, to
name a few examples. At the same time machine learning methods help helping deciphering the informa-
tion in our dna and make sense of the flood of information gathered on the web. These notes provide an
introduction to the fundamental concepts and methods at the core of modern machine learning.
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CHAPTER 1

Statistical Learning Theory

Machine Learning deals with systems that are trained from data rather than being explicitly pro-
grammed. Here we describe the data model considered in statistical learning theory.

1.1. Data

The goal of supervised learning is to find an underlying input-output relation

f(xnew) ∼ y,
given data.
The data, called training set, is a set of n input-output pairs,

S = {(x1, y1), . . . , (xn, yn)}.
Each pair is called an example. We consider the approach to machine learning based on the so called
learning from examples paradigm.

Given the training set, the goal is to learn a corresponding input-output relation. To make sense of
this task we have to postulate the existence of a model for the data. The model should take into account
the possible uncertainty in the task and in the data.

1.2. Probabilistic Data Model

The inputs belong to an input space X , we assume throughout that X ⊆ RD. The outputs belong
to an output space Y . We consider several possible situations: regression Y ⊆ R, binary classification
Y = {−1, 1} and multi-category (multiclass) classification Y = {1, 2, . . . , T}. The space X × Y is called
the data space.

We assume there exists a fixed unknown data distribution p(x, y) according to which the data are
identically and independently distributed (i.i.d.). The probability distribution pmodels different sources
of uncertainty. We assume that it factorizes as p(x, y) = pX(x)p(y|x), where

• the conditional distribution p(y|x), see Figure 1, can be seen as a form of noise in the output.
For example, in regression the following model is often considered y = f∗(x) + ε, where f∗ is
a fixed unknown function and ε is random noise, e.g. standard Gaussian N (0, σI), σ ∈ [0,∞).
In classification, a noiseless situation corresponds to p(1|x) = 1 or 0 for all x.

YX

p (y|x)

x

FIGURE 1. For each input x there is a distribution of possible outputs p(y|x).

1
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2 1. STATISTICAL LEARNING THEORY

• The marginal distribution pX(x) models uncertainty in the sampling of the input points.

1.3. Loss Function and and Expected Risk

The goal of learning is to estimate the “best” input-output relation– rather than the whole distribu-
tion p.

More precisely, we need to fix a loss function

` : Y × Y → [0,∞),

which is a (point-wise) measure of the error `(y, f(x)) we incur in when predicting f(x) in place of y.
Given a loss function, the ”best” input-output relation is the target function f∗ : X → Y minimizing the
expected loss (or expected risk)

E(f) = E[`(y, f(x))] =

∫
dxdyp(x, y)`(y, f(x)).

which can be seen as a measure of the error on past as well as future data. The target function cannot be
computed since the probability distribution p is unknown. A (good) learning algorithm should provide
a solution that behaves similarly to the target function, and predict/classify well new data. In this case,
we say that the algorithm generalizes.

1.4. Stability, Overfitting and Regularization

A learning algorithm is a procedure that given a training set S computes an estimator fS . Ideally
an estimator should mimic the target function, in the sense that E(fS) ≈ E(f∗). The latter requirement
needs some care since fS depends on the training set and hence is random. For example one possibility
is to require an algorithm to be good in expectation, in the sense that

ESE(fS)− E(f∗),

is small.
More intuitively, a good learning algorithm should be able to describe well (fit) the data, and at

the same time be stable with respect to noise and sampling. Indeed, a key to ensure good general-
ization property is to avoid overfitting, that is having estimators which are highly dependent on the
data (unstable), possibly with a low error on the training set and yet a large error on future data. Most
learning algorithms depend one (or more) regularization parameter that control the trade-off between
data-fitting and stability. We broadly refer to this class of approaches as regularization algorithms, their
study is our main topic of discussion.
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CHAPTER 2

Local Methods

We describe a simple yet efficient class of algorithms, the so called memory based learning algo-
rithms, based on the principle that nearby input points should have the similar/same output.

2.1. Nearest Neighbor

Consider a training set
S = {(x1, y1), . . . , (xn, yn)}.

Given an input x̄, let
i′ = arg min

i=1,...,n
‖x̄− xi‖2

and define the nearest neighbor (NN) estimator as

f̂(x̄) = yi′ .

Every new input point is assigned the same output as its nearest input in the training set. We add few
comments. First, while in the above definition we simply considered the Euclidean norm, the method
can be promptly generalized to consider other measure of similarity among inputs. For example if the
input are binary strings, i.e. X = {0, 1}D, one could consider the Hamming distance

dH(x, x̄) =
1

D

D∑
j=1

1[xj 6=x̄j ]

where xj is the j-th component of a string x ∈ X .
Second, the complexity of the algorithm for predicting any new point isO(nD)– recall that the complex-
ity of multiplying two D-dimensional vectors is O(D). Finally, we note that NN can be fairly sensitive
to noise.

2.2. K-Nearest Neighbor

Consider
dx̄ = (‖x̄− xi‖2)ni=1

the array of distances of a new point x̄ to the input points in the training set. Let

sx̄

be the above array sorted in increasing order and

Ix̄

the corresponding vector of indices, and

Kx̄ = {I1
x̄, . . . , I

K
x̄ }

be the array of the first K entries of Ix̄. The K-nearest neighbor estimator (KNN) is defined as,

f̂(x̄) =
∑
i′∈Kx̄

yi′ ,

or f̂(x̄) = 1
K

∑
i′∈Kx̄ yi′ . In classification KNN can be seen as a voting scheme among the K nearest

neighbors and K is taken to be odd to avoid ties. The parameter K controls the stability of the KNN
estimate: when K is small the algorithm is sensitive to the data (and simply reduces to NN for K = 1).
WhenK increases the estimator becomes more stable. In classification, it eventually simply becomes the
ratio of the number of elements for each class. The question of how to best choose K will be the subject
of a future discussion.

3
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4 2. LOCAL METHODS

2.3. Parzen Windows

In KNN each of the K neighbors has equal weights in determining the output of a new point. A
more general approach is to consider estimators of the form,

f̂(x̄) =

∑n
i=1 yik(x̄, xi)∑n
i=1 k(x̄, xi)

,

where k : X ×X → [0, 1] is a suitable function, which can be seen as a similarity measure on the input
points. The function k defines a window around each point and is sometimes called a Parzen window. A
classification rule is obtained considering the sign of f̂(x̄).
In many examples the function k depends on the distance ‖x− x′‖, x, x′ ∈ X . For example,

k(x′, x) = 1‖x−x′‖≤r.

This choice induce a Parzen window analogous to KNN, here the parameter K is replaced by the radius
r. More generally it is interesting to have a decaying weight for point which are further away. For
example considering

k(x′, x) = (1− ‖x− x′‖)+1‖x−x′‖≤r,

where (a)+ = a, if a > 0 and (a)+ = 0, otherwise. Another possibility is to consider fast decaying
functions such as:

Gaussian k(x′, x) = e−‖x−x
′‖2/2σ2

.

or
Exponential k(x′, x) = e−‖x−x

′‖/
√

2σ.

In all the above methods there is a parameter r or σ that controls the influence that each neighbor has
on the prediction.

2.4. High Dimensions

The following simple reasoning highlights a phenomenon which is typical of dealing with high
dimensional learning problems. Consider a unit cube in D dimensions, and a smaller cube of edge e.
How shall we choose e to capture 1% of the volume of the larger cube? Clearly, we need e = D

√
.01. For

example e = .63 for D = 10 and e = .95 for D = 100. The edge of the small cube is virtually the same
length of that of the large cube. The above example illustrates how in high dimensions our intuition of
neighbors and neighborhoods is challenged.
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CHAPTER 3

Bias Variance and Cross-Validation

Here we ask the question of how to chooseK: is there an optima choice ofK? Can it be computed in
practice? Towards answering these questions we investigate theoretically the question of how K affects
the performance of the KNN algorithm.

3.1. Tuning and Bias Variance Variance Decomposition

Ideally we would like to choose K that minimizes the expected error

ESEx,y(y − f̂K(x))2.

We next characterize the corresponding minimization problem to uncover one of the most fundamental
aspect of machine learning.
For the sake of simplicity we consider a regression model

yi = f∗(xi) + δi, EδI = 0,Eδ2
i = σ2 i = 1, . . . , n

Moreover, we consider the least square loss function to measure errors, so that the performance of the
KNN algorithm is given by the expected loss

ESEx,y(y − f̂K(x))2 = ExESEy|x(y − f̂K(x))2︸ ︷︷ ︸
ε(K)

.

To get an insight on how to choose K, we analyze theoretically how this choice influences the expected
loss. In fact, in the following we simplify the analysis considering the performance of KNN ε(K) at a
given point x.

First, note that

ε(K) = σ2 + ESEy|x(f∗(x)− f̂K(x))2,

where σ2 can be seen as an irreducible error term. Second, to study the latter term we introduce the
expected KNN algorithm,

Ey|xf̂K(x) =
1

K

∑
`∈Kx

f∗(x`).

We have

ESEy|x(f∗(x)− f̂K(x))2 = (f∗(x)−ESEy|xf̂K(x))2︸ ︷︷ ︸
Bias

+ESEy|x(Ey|xf̂K(x)− f̂K(x))2︸ ︷︷ ︸
V ariance

Finally, we have

ε(K) = σ2 + (f∗(x) +
1

K

∑
`∈Kx

f∗(x`))
2 +

σ2

K

5
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6 3. BIAS VARIANCE AND CROSS-VALIDATION

FIGURE 1. The Bias-Variance Tradeoff. In the KNN algorithm the parameterK controls
the achieved (model) complexity.

3.2. The Bias Variance Trade-Off

We are ready to discuss the behavior of the (point-wise) expected loss of the KNN algorithm as a
function of K. As it is clear from the above equation, the variance decreases with K. The bias is likely
to increase with K, if the function f∗ is suitably smooth. Indeed, for small K the few closest neighbors
to x will have values close to f∗(x), so their average will be close to f∗(x). Whereas, as K increases
neighbors will be further away and their average might move away from f∗(x). A larger bias variance
is preferred when data are few/noisy to achieve a better control of the variance, whereas the bias can be
decreased as more data become available, hence reducing the variance. For any given training set, the
best choice for K would be the one striking the optimal trade-off between bias and variance (that is the
value minimizing their sum).

3.3. Cross Validation

While instructive, the above analysis is not directly useful in practice since the data distribution,
hence the expected loss, is not accessible. In practice, data driven procedures are used to find a proxy
for the expected loss. The simplest such procedure is called hold-out cross validation. Part of the training
S set is hold-out, to compute a (holdout ) error to be used as a proxy of the expected error. An empirical
bias variance trade-off is achieved choosing the value ofK that achieves minimum hold-out error. When
data are scarce the hold-out procedure, based on a simple ”two ways split” of the training set, might
be unstable. In this case, so called V -fold cross validation is preferred, which is based on multiple data
splitting. More precisely, the data are divided in V (non overlapping) sets. Each set is hold-out and used
to compute an hold-out error which is eventually averaged to obtained the final V -fold cross validation
error. The extreme case where V = n is called leave-one-out cross validation.

3.3.1. Conclusions: Beyond KNN. Most of the above reasonings hold for a large class of learning
algorithms beyond KNN. Indeed, many (most) algorithms depend one one or more parameter control-
ling the bias-variance tradeoff.



“MLNotes” — 2014/9/15 — 10:54 — page 7 — #11

CHAPTER 4

Regularized Least Squares

In this class we introduce a class of learning algorithms based Tikhonov regularization, a.k.a. penal-
ized empirical risk minimization and regularization. In particular, we focus on the algorithm defined
by the square loss.

4.1. Regularized Least Squares

We consider the following algorithm

(4.1) min
w∈RD

1

n

n∑
i=1

(yi − wTxi))2 + λwTw, λ ≥ 0.

A motivation for considering the above scheme is to view the empirical error

1

n

n∑
i=1

(yi − wTxi))2,

as a proxy for the expected error ∫
dxdyp(x, y)(y − wTx))2.

The term wTw is a regularizer and help preventing overfitting.
The term wTw = ‖w‖2 is called regularizer and controls the stability of the solution. The parameter

λ balances the error term and the regularizer. Algorithm (4.1) is an instance of Tikhonov regulariza-
tion, also called penalized empirical risk minimization. We have implicitly chosen the space of possible
solution, called the hypotheses space, to be the space of linear functions, that is

H = {f : RD → R : ∃w ∈ RD such that f(x) = xTw, ∀x ∈ RD},

so that finding a function fw reduces to finding a vectorw. As we will see in the following, this seemingly
simple example will be the basis for much more complicated solutions.

4.2. Computations

In this case it is convenient to introduce the n times D matrix Xn, where the rows are the input
points, and the n by 1 vector Yn where the entries are the corresponding outputs. With this notation

1

n

n∑
i=1

(yi − wTxi))2 =
1

n
‖Yn −Xnw‖2.

A direct computation shows that the gradient with respect to w of the empirical risk and the regularizer
are respectively

− 2

n
XT
n (Yn −Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares solves the linear
system

(XT
nXn + λnI)w = XT

n Yn.

Several comments are in order. First, several methods can be used to solve the above linear systems,
Choleski decomposition being the method of choice, since the matrix XT

nXn + λI is symmetric and
positive definite. The complexity of the method is essentially O(nd2) for training and O(d) for testing.
The parameter λ controls the invertibility of the matrix (XT

nXn + λnI).

7
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8 4. REGULARIZED LEAST SQUARES

4.3. Interlude: Linear Systems

Consider the problem
Ma = b,

where M is a D by D matrix and a, b vectors in RD. We are interested in determing a satisfying the
above equation given M, b. If M is invertible, the solution to the problem is

a = M−1b.

• If M is a diagonal M = diag(σ1, . . . , σD) where σi ∈ (0,∞) for all i = 1, . . . , D, then

M−1 = diag(1/σ1, . . . , 1/σD), (M + λI)−1 = diag(1/(σ1 + λ), . . . , 1/(σD + λ)

• If M is symmetric and positive definite, then considering the eigendecomposition

M−1 = V ΣV T , Σ = diag(σ1, . . . , σD), V V T = I,

then
M−1 = V Σ−1V T , Σ−1 = diag(1/σ1, . . . , 1/σD),

and
(M + λI)−1 = V ΣλV

T , Σλ = diag(1/(σ1 + λ), . . . , 1/(σD + λ)

The ratio σD/σ1 is called the condition number of M .

4.4. Dealing with an Offset

When considering linear models, especially in relatively low dimensional spaces, it is interesting to
consider an offset, that is wTx + b. We shall ask the question of how to estimate b from data. A simple
idea is to simply augment the dimension of the input space, considering x̃ = (x, 1) and w̃ = (w, b).
While this is fine if we do not regularize, if we do then we still tend to prefer linear functions passing
through the origin, since the regularizer becomes

‖w̃‖2 = ‖w‖2 + b2.

In general we might not have reasons to believe that the model should pass through the origin, hence
we would like to consider an offset and still regularize considering only ‖w‖2, so that the offset is not
penalized. Note that the regularized problem becomes

min
(w,b)∈RD+1

1

n

n∑
i=1

(yi − wTxi − b)2 + λ‖w‖2.

The solution of the above problem is particularly simple when considering least squares. Indeed, in this
case it can be easily proved that a solution w∗, b∗ of the above problem is given by

b∗ = ȳ − x̄Tw∗

where ȳ = 1
n

∑n
i=1 yi, x̄ = 1

n

∑n
i=1 xi and w∗ solves

min
w∈RD+1

1

n

n∑
i=1

(yci − wTxci )2 + λ‖w‖2.

where yci = y − ȳ and xci = x− x̄ for all i = 1, . . . , n.



“MLNotes” — 2014/9/15 — 10:54 — page 9 — #13

CHAPTER 5

Regularized Least Squares Classification

In this class we introduce a class of learning algorithms based Tikhonov regularization, a.k.a. penal-
ized empirical risk minimization and regularization. In particular, we focus on the algorithm defined
by the square loss.

While least squares are often associated to regression problem, we next discuss theyr interpretation
in the context of binary classification and discuss an extension to multi class classification.

5.1. Nearest Centroid Classifier

Let’s consider a classification problem and assume that there is an equal number of point for class 1
and −1. Recall that the nearest centroid rule is given by

signh(x), h(x) = ‖x−m−1‖2 − ‖x−m1‖2

where
m1 =

2

n

∑
i | yi=1

xi, m−1 =
2

n

∑
i | yi=−1

xi.

It is easy to see that we can write,

h(x) = xTw + b, w = m1 −m−1, b = −(m1 −m−1)Tm,

where

m = m1 +m−1 =
1

n

n∑
i=1

xi.

In a compact notation we can write,

h(x) = (x−m)T (m1 −m−1).

5.2. RLS for Binary Classification

If we consider an offset, the classification rule given by RLS is

signf(x), f(x) = xTw + b,

where
b = −mTw,

since 1
n

∑n
i=1 yi = 0 by assumption, and

w = (X
T

nXn + λnI)−1X
T

nYn = (
1

n
X
T

nXn + λI)−1 1

n
X
T

nYn,

with Xn the centered data matrix having rows xi −m, i = 1, . . . ,m.
It is easy to show a connection between the RLS classification rule and the nearest centroid rule.

Note that,
1

n
X
T

NYn =
1

n
XT
NYn = m1 −m−1,

so that, if we let Cλ = 1
nX

T

nXn + λI

b = −mTC−1
λ (m1 −m−1)

and
f(x) = (x−m)TC−1

λ (m1 −m−1)

If λ is large then ( 1
nX

T
nXn + λI) ∼ λI , and we see that

f(x) ∼ 1

λ
h(x)⇔ signf(x) = signh(x).

9
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10 5. REGULARIZED LEAST SQUARES CLASSIFICATION

If λ is small Cλ ∼ C = 1
nX

T

nXn, the inner product xTw is replaced with a new inner product (x −
m)TC−1(x−m). The latter is the so called Mahalanobis distance. If we consider the eigendecomposition
of C = V ΣV T we can better understand the effect of the new inner product. We have

f(x) = (x−m)TV Σ−1λ−1V T (m1 −m−1) = (x̃− m̃)T (m̃1 − m̃−1),

where ũ = Σ1/2V Tu. The data are rotated and then stretched in directions where the eigenvalues are
small.

5.3. RLS for Multiclass Classification

RLS can be adapted to problem with T > 2 classes considering

(5.1) (XT
nXn + λnI)W = XT

n Yn.

where W is a D by T matrix, and Yn is a n by T matrix where the i-th column has entry 1 if the corre-
sponding input belongs to the i-th class and−1 otherwise. If we let wt, t = 1, . . . , T , denote the columns
of W then the corresponding classification rule c : X → {1, . . . , T} is

c(x) = arg max
t=1,...,T

xTW t

The above scheme can be seen as a reduction scheme from multi class to a collection of binary
classification problems. Indeed, the solution of 5.1 can be shown to solve the minimization problem

min
W 1,...,WT

T∑
t=1

(
1

n

n∑
i=1

(yti − xTi W t)2 + λ‖W t‖2).

where yti = 1 if the xi belong to class t and yti = −1, otherwise. The above minimization can be done
separately for all wi, i = 1, . . . , T . Each minimization problem can be interpreted as performing a ”one
vs all” binary classification.
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CHAPTER 6

Feature, Kernels and Representer Theorem

In this class we introduce the concepts of feature map and kernel that allow to generalize Regular-
ization Networks, and not only, well beyond linear models. Our starting point will be again Tikhonov
regularization,

(6.1) min
w∈RD

1

n

n∑
i=1

`(yi, fw(xi)) + λ‖w‖2.

6.1. Feature Maps

A feature map is a map
Φ : X → F

from the input space into a new space called feature space where there is a scalar product Φ(x)TΦ(x′).
The feature space can be infinite dimensional and the following notation is used for the scalar product
〈Φ(x),Φ(x′)〉F .

6.1.1. Beyond Linear Models. The simplest case is when F = Rp, and we can view the entries
Φ(x)j , j = 1, . . . , p as novel measurements on the input points. For illustrative purposes consider X =

R2. An example of feature map could be x = (x1, x2) 7→ Φ(x) = (x2
1,
√

2x1x2, x
2
2). With this choice if we

now consider

fw(x) = wTΦ(x) =

p∑
j=1

wjΦ(x)j

we effectively have that the function is no longer linear but it is a polynomial of degree 2. Clearly the
same reasoning holds for much more general choice of measurements (features), in fact any finite set
of measurements. Although seemingly simple, the above observation allows to consider very general
models. Figure 1 gives a geometric interpretation of the potential effect of considering a feature map.
Points which are not easily classified by a linear model, can be easily classified by a linear model in the
feature space. Indeed, the model is no longer linear in the original input space.

6.1.2. Computations. While feature maps allow to consider nonlinear models, the computations
are essentially the same as in the linear case. Indeed, it is easy to see that the computations considered
for linear models, under different loss functions, remain unchanged, as long as we change x ∈ RD into
Φ(x) ∈ Rp. For example, for least squares we simply need to replace the n by D matrix Xn with a new
n by p matrix Φn, where each row is the image of an input point in the feature space as defined by the
feature map.

6.2. Representer Theorem

In this section we discuss how the above reasoning can be further generalized. The key result is that
the solution of regularization problems of the form (6.1), can always be written as

(6.2) ŵT =

n∑
i=1

xTi ci,

11
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FIGURE 1. A pictorial representation of the potential effect of considering a feature map
in a simple two dimensional example.

where x1, . . . , xn are the inputs in the training set and c = (c1, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) (XT
nXn + λnI)−1XT

n = XT
n (XnX

T
n + λnI)−1,

so that we have,

w = XT
n (XnX

T
n + λnI)−1Yn︸ ︷︷ ︸

c

=

n∑
i=1

xTi ci.

Equation (6.3) follows from considering the SVD of Xn, that is Xn = UΣV T . Indeed we have XT
n =

V ΣUT so that
(XT

nXn + λnI)−1XT
n = V (Σ2 + λ)−1ΣUT

and
XT
n (XnX

T
n + λnI)−1 = V Σ(Σ2 + λ)−1UT .

6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + λnI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xTi xj . The matrix Kn is called the kernel matrix and
is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx′. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x′). In this case, the representer theorem (7.2), that
is fw(x) = wTx =

∑n
i=1 x

T
i xci, becomes

(6.4) f̂(x) =

n∑
i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x′) = xTx′,
• the polynomial kernel K(x, x′) = (xTx′ + 1)d,
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• the Gaussian kernel K(x, x′) = e−
‖x−x′‖2

2σ2 ,
where the last two kernels have a tuning parameter, the degree and Gaussian width, respectively.

A positive definite kernel is often called a reproducing kernel and is a key concept in the theory of
reproducing kernel Hilbert spaces.

We end noting that there are some basic operations that can be used to build new kernels. In partic-
ular it is easy to see that, if K1,K2 are reproducing kernels then K1 +K2 is also a kernel.
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CHAPTER 7

Regularization Networks

In this class we introduce a class of learning algorithms based on Tikhonov regularization, a.k.a. pe-
nalized empirical risk minimization and regularization. In particular, we study common computational
aspects of these algorithms introducing the so called representer theorem.

7.1. Empirical Risk Minimization

Among different approaches to design learning algorithms, empirical risk minimization (ERM) is
probably the most popular one. The general idea behind this class of methods is to consider the empiri-
cal error

Ê(f) =
1

n

n∑
i=1

`(yi, f(xi)),

as a proxy for the expected error

E(f) = E[`(y, f(x))] =

∫
dxdyp(x, y)`(y, f(x)).

Recall that ` is a loss function and measure the price we pay predicting f(x) when in fact the right label
is y. Also, recall that the expected error cannot be directly computed since the data distribution is fixed
but unknown.

In practice, to turn the above idea into an actual algorithm we need to fix a suitable hypotheses
space H on which we will minimize Ê .

7.2. Hypotheses Space

The hypotheses space should be such that computations are feasible, at the same time it should be
rich since the complexity of the problem is not known a priori. As we have seen, the simplest example
of hypotheses space is the space of linear functions, that is

H = {f : RD → R : ∃w ∈ RD such that f(x) = xTw, ∀x ∈ RD}.

Each function f is defined by a vector w and we let fw(x) = xTw. We have also seem how we can vastly
extend the class of functions we can consider by introducing a feature map

Φ : RD → Rp,

where typically p� D, and considering functions of the form fw(x) = Φ(x)Tw. We have also seen how
this model can be pushed further considering so called reproducing kernels

K : RD × RD → R

that is symmetric and positive definite functions, implicitly defining a feature map via the equation

Φ(x)TΦ(x′) = K(x, x′).

If the hypotheses space is rich enough, solely minimizing the empirical risk is not enough to ensure
a generalizing solution. Indeed, simply solving ERM would lead to estimators which are highly depen-
dent on the data and could overfit. Regularization is a general class of techniques that allow to restore
stability and ensure generalization.

15
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7.3. Tikhonov regularization and Representer Theorem

We consider the following Tikhonov regularization scheme,

(7.1) min
w∈RD

Ê(fw) + λ‖w‖2.

The above scheme describes a large class of methods sometimes called Regularization Networks. The
term ‖w‖2 is called regularizer and controls the stability of the solution. The parameter λ balances the
error term and the regularizer.

Different classes of methods are induced by the choice of different loss functions In the following,
we will see common aspects and differences in considering different loss functions.

There is no general computation scheme to solve problems of the form (7.1), and the actual solu-
tion for each algorithm depend on the considered loss function. However, we show next that for linea
function the solution of problem (7.1) can always be written as

(7.2) w = Xt
nc, f(x) =

n∑
i=1

xTi xci

where Xn is the n by D data matrix and c = (c1, . . . , cn). This allows on the one hand to reduce compu-
tational complexity when n� D, or n� p in the case of feature map.

7.3.1. Representer Theorem for General Loss Functions. Here we discuss the general proof of the
representer theorem for loss function other than the square loss.

• The vectors of the form (7.2) form a linear subspace Ŵ of RD. Hence for every v ∈ RD we have
the decomposition w = ŵ + ŵ⊥, where ŵ ∈ Ŵ and ŵ⊥ belongs to the space Ŵ⊥ of vectors
orthogonal to those in Ŵ , i.e.

(7.3) ŵT ŵ⊥ = 0.

• The following is the key observation: for all i = 1, . . . , n xi ∈ Ŵ , so that

fw(xi) = xTi w = xTi (ŵ + ŵ⊥) = xTi ŵ.

It follows that the empirical error depends only on ŵ!
• For the regularizer we have

‖w‖2 = ‖ŵ + ŵ⊥‖2 = ‖ŵ‖2 + ‖ŵ⊥‖2,

because of (7.3). Clearly the above expression is minimized if we take ŵ⊥ = 0.
The theorem is hence proved, the first term in (7.1) depends only on vector of the form (7.2) and the
same form is the best to minimize the second term

7.4. Loss Functions and Target Functions

It is useful to recall that different loss function might define different goal via the corresponding
target functions.

A simple calculation shows what is the target function corresponding to the square loss. Recall that
the target function minimize the expected squared loss error

E(f) =

∫
p(x, y)dxdy(y − f(x))2 =

∫
p(x)dx

∫
p(y|x)dy(y − f(x))2.

To simplify the computation we let

f∗(x) = arg min
a∈R

∫
p(y|x)dy(y − a)2,

for all x ∈ X . It is easy to see that the solution is given by

f∗(x) =

∫
dyp(y|x)y.

In classification
f∗(x) = 2p− 1, p = p(1|x),

which justify taking the sing of f .
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Similarly we can derive the target function of the logistic loss function,

f∗(x) = arg min
a∈R

∫
p(y|x)dy log(1 + e−ya) = arg min

a∈R
p log(1 + e−a) + (1− p) log(1 + ea).

We can simply take the derivative and set it equal to zero,

p
−e−a

(1 + e−a)
+ (1− p) ea

(1 + ea)
= −p 1

(1 + e−a)
+ (1− p) ea

(1 + ea)
,

so that
p =

ea

(1 + ea)
=⇒ a = log

p

1− p
A similar computation allows to
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CHAPTER 8

Logistic Regression

We consider logistic regression, that is Tikhonov regularization

(8.1) min
w∈RD

Ê(fw) + λ‖w‖2, Ê(fw) =
1

n

n∑
i=1

`(yi, fw(xi))

where the loss function is `(y, fw(x)) = log(1 + e−yfw(x)), namely the logistic loss function.
Since the logistic loss function is differentiable the natural candidate to compute a minimizer is a

the gradient descent algorithm which we describe next.

8.1. Interlude: Gradient Descent and Stochastic Gradient

Before starting let’s recall the following basic definition
• Gradient of G : RD → R,

∇G = (
∂G

∂w1
, . . . ,

∂G

∂wD
)

• Hessian of G : RD → R,

H(G)i,j =
∂2G

∂wi∂wj

• Jacobian of F : RD → RD

J(F )i,j =
∂F i

∂wj

Note that H(G) = J(∇G).

Consider the minimization problem

min
w∈RD

G(w) G : RD → R

whenG is a differentiable (strictly convex) function. A general approach to find an approximate solution
of the problem is the gradient descent (GD) algorithm, based on the following iteration

(8.2) wt+1 = wt − γ∇G(wt)

for a suitable initialization w0. Above ∇G(w) is the gradient of G at w and γ is a positive constant (or a
sequence) called the step-size. Choosing the step-size appropriately ensures the iteration to converge to
a minimizing solution. In particular, a suitable choice can be shown to be

γ = 1/L,

where L is the Lipschitz constant of the gradient, that is L such that

‖∇G(w)−∇G(w′)‖ ≤ L‖w − w′‖.
It can be shown that L is less or equal than the biggest eigenvalue of the Hessian H(G)(w) for all w. The
term descent comes from the fact that it can be shown that

G(wt) ≥ G(wt+1).

A related technique is called stochastic gradient or also incremental gradient. To describe this
method, we consider an objective function is the form

G(w) =

n∑
i=1

gi(w), gi : RD → R, i = 1, . . . , n,

so that∇G(w) =
∑n
i=1∇gi(w). The stochast gradient algorithm corresponds to replacing (8.2) with

wt+1 = wt − γ∇git(wt)

19
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where it denotes a deterministic or stochastic sequence of indices. In this case, the step size needs to be
chosen as sequence γt going to zero but not too fast. For example the choice γt = 1/t can be shown to
suffice.

8.2. Regularized Logistic Regression

The corresponding regularized empirical risk minimization problem is called regularized logistic
regression. Its solution can be computed via gradient descent or stochastic gradient. Note that

∇Ê(fw) =
1

n

n∑
i=1

xi
−yie−yix

T
i wt−1

1 + e−yix
T
i wt−1

=
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1

so that, for w0 = 0, the gradient descent algorithm applied to (8.1) is

wt = wt−1 − γ

(
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1

+ 2λwt−1

)
for t = 1, . . . T , where

1

n

n∑
i=1

−yixie−yix
T
i w

1 + e−yix
T
i w

+ 2λw = ∇(Ê(fw) + λ‖w‖2)

A direct computation shows that

J(∇Ê(fw)) =
1

n

n∑
i=1

xix
T
i `
′′
(yiw

Txi) + 2λI

where `
′′
(a) = e−a

(1+e−a)2 ≤ 1 is the second derivative of the function `(a) = log(1 + e−a). In particular it
can be shown that

L ≤ σmax(
1

n
XT
nXn + 2λI)

where σmax(A) is the largest eigenvalue of a (symmetric positive semidefinite) matrix A.

8.3. Kernel Regularized Logistic Regression

The vector of coefficients can be computed by the following iteration

ct = ct−1 − γB(ct−1), t = 1, . . . , T

for c0 = 0, and where B(ct−1) ∈ Rn with

B(ct−1)i = − 1

n

yi

1 + eyi
∑n
k=1 x

T
k xic

k
t−1

+ 2λcit−1.

Here again we choose a constant step-size. Note that

σmax(
1

n
XT
nXn + λI) = σmax(

1

n
XnX

T
n + λI) = σmax(

1

n
Kn + λI).

8.4. Logistic Regression and confidence estimation

We end recalling that a main feature of logistic regression is that, as discussed, The solution of
logistic regression can be shown to have probabilistic interpretation, in fact it can be derived from the
following model

p(1|x) =
ex
Tw

1 + exTw

where the right hand side is called logistic function. This latter observation can be used to deduce a
confidence from the on each prediction of the logistic regression estimator.
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CHAPTER 9

From Perceptron to SVM

We next introduce the support vector machine discussing one of the most classical learning algo-
rithm, namely the perceptron algorithm.

9.1. Perceptron

The perceptron algorithm finds a linear classification rule according to the following iterative pro-
cedure. Set w0 = 0 and update

wi = wi−1 + γyixi, if yiwTxi ≤ 0

and let wi = wi−1 otherwise. In words, if an example is correctly classified, then the perceptron does
not do anything. If the perceptron incorrectly classifies a training example, each of the input weights is
moved a little bit in the correct direction for that training example.
The above procedure can be seen as the stochastic (sub) gradient associated to the objective function

n∑
i=1

| − yiwTxi|+

where the |a|+ = max{0, a}. Indeed if yiwTxi < 0, then | − yiwTxi|+ = −yiwTxi and ∇| − yiwTxi|+ =
−yixi, if yiwTxi > 0, then | − yiwTxi|+ = 0 hence ∇| − yiwTxi|+ = 0. Clearly an off-set can also be
considered, replacing wTx by wTx+ b and analogous iteration can ve derived.

The above method can be shown to converge for γ = const. if the data are linearly separable. If
the data are not separable with a constant step size the perception will typically cycle. Moreover, the
perceptron does not implement any specific form of regularization so in general it is prone to overfit the
data.

9.2. Margin

The quantity α = ywTx defining the objective function of the perceptron is a natural error mea-
sure and is sometimes called the functional margin. Next we look at a geometric interpretation of the
functional margin that will lead to a different derivation of Tikhonov regularization for the so called
hinge loss function. We begin considering a binary classification problem where the classes are linearly
separable.

Consider the decision surface D = {x : wTx = 0} defined by a vector w and x such that wTx > 0. It
is easy to check that, the projection of x on D is a point xw satisfying,

xw = x− β w

‖w‖

where β is the distance between x and D. Clearly xw ∈ D so that

wT (x− β w

‖w‖
) = 0⇔ β =

wT

‖w‖
x.

If x is x such that wTx < 0 then β = − wT

‖w‖x, so that generally we have

β = y
wT

‖w‖
x

The above quantity is often called the geometric margin and clearly if ‖w‖ = 1 is coincides with the
geometric margin. Note that the margin is scale invariant, in the sense that β = y w

T

‖w‖x = y 2wT

‖2w‖x, as is
the decision rule sign(wTx).

21
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9.3. Maximizing the Margin

Maximizing the margin is a natural approach to select a linear separating rule in the separable case.
More precisely consider

βw = min
i=1,...,n

βi, βi = yi
wT

‖w‖
xi, i = 1, . . . , n,

max
w∈RD

βw, subj. to, βw ≥ 0, ‖w‖ = 1.(9.1)

Note that the last constraint is needed to avoid the solution w =∞ (check what happens if you consider
a solution w and then scale it by a constant kw).

In the following we manipulate the above expression to obtain a problem of the form

min
w∈RD

F (w), Aw + c ≥ 0,

where F is convex, A is a matrix and c a vector. These are convex programming problem which can
efficiently solved.

We begin by rewriting problem (9.1) by introducing a dummy variable β = βw to obtain

max
(w,β)∈RD+1

β, subj. to, yi
wT

‖w‖
xi ≥ β;β ≥ 0, ‖w‖ = 1

(we are basically using the definition of minimum as the maximum of the infimal points). We next
would like to avoid the constraint ‖w‖ = 1. It can be shown that the above problem is equivalent to
considering

max
(w,α)∈RD+1

α

‖w‖
, subj. to, yiw

Txi ≥ α;α ≥ 0.

with β = α
‖w‖ , where the key idea is that the latter problem is scale invariant. More precisely that we

can always restrict yourselves to ‖w‖ = 1 by appropriately rescaling the solutions. Using again scale
invariance (check what happens if you consider a solution w and then scale it by a constant (kw, kα)),
without loss of generality we can fix α = 1 to obtain

max
w∈RD

1

‖w‖
, subj. to, yiw

Txi ≥ 1 , i = 1, . . . , n,

or equivalently

(9.2) min
w∈RD

1

2
‖w‖2, subj. to, yiw

Txi ≥ 1 , i = 1, . . . , n,

In the above reasoning we assumed data to be separable if this is not the case one could considering
slack variables ξ = (ξ1, . . . , ξn) to relax the constraints in the above problem, considering

(9.3) min
w∈RD,ξ∈Rn

1

2
‖w‖2 + C

n∑
i=1

, subj. to, yiwTxi ≥ 1− ξi, ξi ≥ 0 , i = 1, . . . , n.

9.4. From Max Margin to Tikhonov Regularization

Note that ξi = max{0, 1− yiwTxi} = |1− yiwTxi|+, for all i = 1, . . . , n. Then if we set λ = 1
2Cn , we

have that problem (9.3) is equivalent to

min
w∈RD,ξ∈Rn

1

n

n∑
i=1

|1− yiwTxi|+ + λ‖w‖2.

9.5. Computations

The derivation of a solution to the SVM problem requires notions of convex optimization, specifi-
cally considering so called Lagrangian duality. Indeed, it can be shown that the solution of problem (9.3)
is of the form

w =

n∑
i=1

yiαixi
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where the coefficients αi for i = 1, . . . , n are given by the solution of the so called dual problem,

min
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj , subject to, 0 ≤ αi ≤ C, i = 1, . . . , n,(9.4)

where in particular it can be shown that

αi = 0 =⇒ yiw
Txi ≥ 1.

9.6. Dealing with an off-set

Finally, it can be shown that the above reasoning can be generalized to consider an offset, that is
wTx+ b, in which case we simply have to add the constraint

n∑
i=1

yiαixi = 0

to the dual problem (9.4).
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CHAPTER 10

Dimensionality Reduction

In many practical applications it is of interest to reduce the dimensionality of the data. In particular,
this is useful for data visualization, or for investigating the ”effective” dimensionality of the data. This
problem is often referred to as dimensionality reduction and can be seen as the problem of defining a
map

M : X = RD → Rk, k � D,

according to some suitable criterion.

10.1. PCA & Reconstruction

PCA is arguably the most popular dimensionality reduction procedure. It is a data driven procedure
that given an (unsupervised) sample S = (x1, . . . , xn) derive a dimensionality reduction defined by a
linear map M . PCA can be derived from several prospective and here we give a geometric/analytical
derivation.

We begin by considering the case where k = 1. We are interested into finding the single most
relevant dimension according to some suitable criterion. Recall that, if w ∈ RD with ‖w‖ = 1, then
the (orthogonal) projection of a point x on w is given by (wTx)w. Consider the problem of finding the
direction p which allows the best possible average reconstruction of the training set, that is the solution
of the problem

(10.1) min
w∈SD−1

1

n

n∑
i=1

‖xi − (wTxi)w‖2,

where SD−1 = {w ∈ RD | ‖w‖ = 1} is the sphere in D dimensions. The norm ‖xi − (wTxi)w‖2 measures
how much we lose by projecting x along the direction w, and the solution p to problem (10.1) is called
the first principal component of the data. A direct computation shows that ‖xi − (wTxi)w‖2 = ‖xi‖ −
(wTxi)

2, so that problem (10.1) is equivalent to

(10.2) max
w∈SD−1

1

n

n∑
i=1

(wTxi)
2.

This latter observation is useful for two different reasons that the we discuss in the following.

10.2. PCA and Maximum Variance

If the data are centered, that is x̄ = 1
nxi = 0, problem (10.2) has the following interpretation: we

a look for the direction along which the data have (on average) maximum variance. Indeed, we can
interpret the term (wTx)2 has the variance of x in the direction w. If the data are not centered, to keep
this interpretation we should replace problem (10.2) with

(10.3) max
w∈SD−1

1

n

n∑
i=1

(wT (xi − x̄))2,

which corresponds to the original problem on the centered data xc = x−x̄. In the terms of problem (10.1)
it is easy to see that this corresponds to considering

(10.4) min
w,b∈SD−1

1

n

n∑
i=1

‖xi − ((wT (xi − b))w + b)‖2.

where ((wT (xi − b))w + b is an affine transformation (rather than an orthogonal projection).

25
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10.3. PCA and Associated Eigenproblem

A simple further manipulation allows to write problem (10.2) as an eigenvalue problem. Indeed,
using the symmetry of the inner product we have

1

n

n∑
i=1

(wTxi)
2 =

1

n

n∑
i=1

wTxiw
Txi =

1

n

n∑
i=1

wTxix
T
i w = wT (

1

n

n∑
i=1

xix
T
i )w

so that problem (10.2) can be written as

(10.5) max
w∈SD−1

wTCnw, Cn =
1

n

n∑
i=1

xix
T
i .

We need two observations. First, in matrix notation Cn = 1
n

∑n
i=1X

T
nXn and it is easy to see that Cn is

symmetric and positive semi-definite. If the data are centered the matrix Cn is the so called covariance
matrix. Clearly the objective function in (10.5) can be written as

wTCnw

wTw

where the latter quantity is the so called Rayleigh quotient. Note that, if Cnu = λu then uTCnu
uTu

= λ,
since the eigenvector u normalized. In fact, it is possible to show that the Rayleigh quotient achieves its
maximum at a vector which corresponds to the maximum eigenvalue of Cn (the proof of this latter fact
uses basic results in linear programming). Then computing the first principal component of the data
reduced to computing the biggest eigenvalue of the covariance and the corresponding eigenvector.

10.4. Beyond the First Principal Component

Next, we discuss how the above reasoning can be generalized to k > 1, that is more than one
principle component. The idea is simply to iterate the above reasoning to describe the input data beyond
what is allowed by the first principal component. Towards this end, we consider the one dimensional
projection which can best reconstruct the residuals

ri = xi − (pTxi)pi,

that is we replace problem (10.1) by

(10.6) min
w∈SD−1,w⊥p

1

n

n∑
i=1

‖ri − (wT ri)w‖2.

Note that for all i = 1, . . . , n,

‖ri − (wT ri)w‖2 = ‖ri‖2 − (wT ri)
2 = ‖ri‖2 − (wTxi)

2

since w ⊥ p. Then, following the reasoning from (10.1) to (10.2), problem (10.6) can equivalently be
written as

(10.7) max
w∈SD−1,w⊥p

1

n

n∑
i=1

(wTxi)
2 = wTCnw.

Again, we have to minimize the Rayleigh quotient of the covariance matrix, however, when compared
to (10.2), we see that there is the new constraint w ⊥ p. Indeed, it can be proven that the solution of
problem (10.7) is given by the second eigenvector of Cn, and the corresponding eigenvalue. The proof
of this latter fact follows the same line of the one for the first principal component. Clearly, the above
reasoning can be generalized to consider more than two components. The computation of the principal
components reduces to the problem of finding the eigenvalues and eigenvectors of Cn. The complexity
of this problem is roughly O(kD2) (note that the complexity of forming Cn is O(nD2)).

The principal components can be stacked as columns of a k by D matrix M , and in fact, because
of the orthogonality constraint, the matrix M is orthogonal, MMT = I . The dimensionality reduction
induced by PCA is hence linear.
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10.5. Singular Value Decomposition

We recall the notion of singular valued decomposition of a matrix which allows in some situations to
improve the computations of the principal components, while suggesting a possible way to generalize
the algorithm to consider non linear dimensionality reduction.

Consider the data matrix Xn, its singular value decomposition is given by

Xn = UΣPT .

where U is a n by d orthogonal matrix, P is a D by d orthogonal matrix, Σ is a diagonal matrix such
that Σi,i =

√
λi, i = 1, . . . , d and d ≤ min{n,D}. The columns of U and the columns of V are called

respectively the left and right singular vectors and the diagonal entries of Σ the singular values. The
singular value decomposition can be equivalently described by the following equations, for j = 1, . . . , d,

Cnpj = λjpj ,
1

n
Knuj = λjuj ,

Xnpj =
√
λjuj ,

1

n
XT
n uj =

√
λjpj ,(10.8)

where Cn = 1
nX

T
nXn and 1

nKn = 1
nXnX

T
n .

If n� p the above equations can be used to speed up the computation of the principal components.
Indeed we can consider the following procedure:

• form the matrix Kn, which is O(Dn2),
• find the first k eigenvectors of Kn, which is O(kn2),
• find the principal components using (10.8), i.e.

(10.9) pj =
1√
λj
XT
n uj =

1√
λj

n∑
i=1

xiu
i
j , j = 1, . . . , d

where u = (u1, . . . , un), which is again O(knd) if we consider k principal components.

10.6. Kernel PCA

The latter reasoning suggests how to generalize the intuition behind PCA beyond linear dimension-
ality reduction by using kernels (or feature maps). Indeed, from equation (10.9) we can see that the
projection of a point x on a principal component p can be written as

(10.10) (M(x))j = xT pj =
1√
λj
xTXT

n uj =
1√
λj

n∑
i=1

xTxiu
i
j ,

for j = 1, . . . , d.
What if we were to map the data using a possibly non linear feature map Φ : X → F , before

performing PCA? If the feature map is finite dimensional, e.g. F = Rp we could simply replace x 7→ Φ(x)
and follow exactly reasoning in the previous sections. Note that in particular that equation (10.10)
becomes

(10.11) (M(x))j = Φ(x)T pj =
1√
λj

n∑
i=1

Φ(x)TΦ(xi)u
i
j ,

for j = 1, . . . , d. More generally one could consider a positive definite kernel K : X ×X → R, in which
case (10.10) becomes

(10.12) (M(x))j =
1√
λj

n∑
i=1

K(x, xi)u
i
j ,

for j = 1, . . . , d. Note that in this latter case, while it is not clear how to form Cn, we can still form and
diagonalize Kn, which is in fact the kernel matrix.



“MLNotes” — 2014/9/15 — 10:54 — page 28 — #32



“MLNotes” — 2014/9/15 — 10:54 — page 29 — #33

CHAPTER 11

Variable Selection

In many practical situations beyond predictions it is important to obtain interpretable results. Inter-
pretability is often determined by detecting which factors have determined our prediction. We look at
this question from the perspective of variable selection.

Consider a linear model

(11.1) fw(x) = wTx =

v∑
i=1

wjxj .

Here we can think of the components xjof an input of specific measurements: pixel values in the case
of images, dictionary words counting in the case of texts, etc. Given a training set the goal of variable
selection is to detect which variables are important for prediction. The key assumption is that the best
possible prediction rule is sparse, that is only few of the coefficients in (11.1) are different from zero.

11.1. Subset Selection

A brute force approach would be to consider all the training sets obtained considering all the pos-
sible subset of variables. More precisely we could begin by considering only the training set where we
retain only the first variable of each input points. Then the one where we retain only the second, and so
on and so forth. Next, we could pass to consider training set with pairs of variables, then triplet etc. For
each training set one would solve the learning problem and eventually end selecting the variables for
which the corresponding training set achieve the best performance.

The approach described has an exponential complexity and becomes unfeasible already for rela-
tively small D. If we consider the square loss, it can be shown that the corresponding problem could be
written as

(11.2) min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))
2 + λ‖w‖0,

where
‖w‖0 = |{j | wj 6= 0}|

is called the `0 norm and counts the number of non zero components in w. In the following we focus
on the least squares loss and consider different approaches to find approximate solution to the above
problem, namely greedy methods and convex relaxation.

11.2. Greedy Methods: (Orthogonal) Matching Pursuit

Greedy approaches are often considered to find approximate solution to problem (11.2) This class
of approaches to variable selection generally encompasses the following steps:

(1) initialize the residual, the coefficient vector, and the index set,
(2) find the variable most correlated with the residual,
(3) update the index set to include the index of such variable,
(4) update/compute coefficient vector,
(5) update residual.

The simplest such procedure is called forward stage-wise regression in statistics and matching pursuit
(MP) in signal processing. To describe the procedure we need some notation. Let Xn be the n by D data
matrix and Xj ∈ Rn, j = 1, . . . , D be the columns of Xn. Let Yn ∈ Rn be the output vector. Let r, w, I
denote the residual, the coefficient vector, an index set, respectively.

The MP algorithm starts by initializing the residual r ∈ Rn, the coefficient vector w ∈ RD, and the
index set I ⊆ {1, . . . , D},

r0 = Yn, , w0 = 0, I0 = ∅.

29
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The following procedure is then iterated for i = 1, . . . , T − 1. The variable most correlated with the
residual is given by

k = arg max
j=1,...,D

aj , aj =
(rTi−1X

j)2

‖Xj‖2
,

where we note that

vj =
rTi−1X

j

‖Xj‖2
= arg min

v∈R
‖ri−1 −Xjv‖2, ‖ri−1 −Xjvj‖2 = ‖ri−1‖2 − aj

The selection rule has then two interpretations. We select the variable, such that the projection on the
output on the corresponding column is larger, or, equivalently, we select the variable such that the
corresponding column best explains the the output vector in a least squares sense.

Then, index set is updated as Ii = Ii−1 ∪ {k}, and the coefficients vector is given by

(11.3) wi = wi−1 + wk, wkk = vkek

where ek is the element of the canonical basis in RDwith k-th component different from zero. Finally,
the residual is updated

ri = ri−1 −Xwk.
A variant of the above procedure, called Orthogonal Matching Pursuit, is also often considered. The
corresponding iteration is analogous to that of MP but the coefficient computation (11.3) is replaced by

wi = arg min
w∈RD

‖Yn −XnMIiw‖2,

where the D by D matrix MI is such that (MIw)j = wj if j ∈ I and (MIw)j = 0 otherwise. Moreover,
the residual update is replaced by

ri = Yn −Xnwi.

11.3. Convex Relaxation: LASSO & Elastic Net

Another popular approach to find an approximate solution to problem (11.2) is based on a convex
relaxation. Namely, the `0 norm is replaced by the `1 norm,

‖w‖1 =

D∑
j=1

|wj |,

so that, in the case of least squares, problem (11.2) is replaced by

(11.4) min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))
2 + λ‖w‖1.

The above problem is called LASSO in statistics and Basis Pursuit in signal processing. In The objective
function defining the corresponding minimization problem is convex but not differentiable. Tools from
non-smooth convex optimization are needed to find a solution. A simple yet powerful procedure to
compute a solution is based on the so called iterative soft thresholding algorithm (ISTA). The latter is
an iterative procedure where, at each iteration, a non linear soft thresholding operator is applied to a
gradient step. More precisely, ISTA is defined by the following iteration

w0 = 0, wi = Sλγ(wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)), i = 1, . . . , Tmax

which should be run until a convergence criterion is met, e.g. ‖wi−wi−1‖ ≤ ε, for some precision ε, or a
prescribed maximum number of iteration Tmax is reached. To ensure convergence we should choose the
step-size γ = n

2‖XTnXn‖
Note that the argument of the soft thresholding operator corresponds to a step

of gradient descent. Indeed,
2

n
XT
n (Yn −Xnwi−1)

The soft thresholding operator acts component wise on a vector w, so that

Sα(u) = ||u| − α|+
u

|u|
.

The above expression shows that the coefficients of the solution of problem (11.2) as computed by ISTA
can be exactly zero, This can be contrasted with Tikhonov regularization where this is hardly the case.
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Indeed, it is possible to see that, on the one hand, while Tikhonov allows to compute a stable solu-
tion, in general its solution is not sparse. On the other hand the solution of LASSO, might not be stable.
The elastic net algorithm, defined as

(11.5) min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))
2 + λ(α‖w‖1 + (1− α)‖w‖22), α ∈ [0, 1],

can be seen as hybrid algorithm which interpolated between Tikhonov and LASSO. The ISTA procedure
can be adapted to solve the elastic net problem, where the gradient descent step incorporates also the
derivative of the `2 penalty term. The resulting algorithm is

w0 = 0, wi = Sλαγ((1− λγ(1− α))wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)), i = 1, . . . , Tmax

To ensure convergence we should choose the step-size γ = n
2(‖XTnXn‖+λ(1−α))
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CHAPTER 12

A Glimpse Beyond The Fence

We next try to give brief overview of 1) topics in machine learning that we have not touched upon,
2) some of the current and future challenges in machine learning.

12.1. Different Kinds of Data

Different machine learning approaches arise to deal with different kinds of input and output. Re-
call that, the input/output pairs are assumed to belong to an input space X and an output space Y ,
respectively. We call Z = X × Y the data space. We list a few examples of input and output spaces.

• Euclidean/Vector Spaces. Perhaps the simples example, covering many practical situations is
X = Rd, d ∈ N.

• Probability distributions. We could set X = {x ∈ Rd+ :
∑d
j=1 x

j = 1, d ∈ N, and view elements
of the space as probability distributions on a finite set Ω of dimension d. More generally given
any probability space Ω we can view X as the space of probability distribution on Ω.
• Strings/Words. Given an alphabet Σ of symbols (letters) one could consider X = Σp, p ∈ N,

the (finite) space of strings (words) of p letters.
• Graphs. We can view X as collection of graphs, i.e. X = {}.

Clearly more exotic examples can be constructed considering compositions of the above examples, for
example X = Rd × Σp, d, p ∈ N etc.

Next we discuss different choices of the output space and see how they often corresponds to prob-
lems with different names.

• Regression, Y = R.
• Binary classification, Y = {−1, 1}. Where we note that here we could have taken Y = {0, 1}–

as well as any other pair of distinct numeric values.
• Multivariate regression, Y = RT , T ∈ N, each output is a vector.
• Functional regression, Y is a Hilbert space, for example each output is a function.
• Multi-category classification, Y = {1, 2, . . . , T}, T ∈ N, the output is one of T categories.
• Multilabel, Y = 2{1,2,...,T}, T ∈ N, each output is any subset of T categories.

An interesting case is that of so called multitask learning. Here Z = (X1, Y1) × (X2, Y2) × · · · ×
(XT , YT )) and the training set is is S = (S1, S2, . . . , ST ). Here we can view each data space/training
set as corresponding to different yet related tasks. In full generality, input/output spaces and data
cardinality can be different.

12.2. Data and Sampling Models

The standard data model we consider is a training set as an i.i.d. sample from a distribution p on
the data space Z.

• Semisupervised, the more general situation where unlabelled data Su are available together
with the labelled data S.
• Transductive, related to the above setting, unlabelled data Su are available together with the

labelled data and the goal is to predict the label of the unlabeled data set Su.
• Online/Dynamic Learning, the data are not i.i.d. The samples can be dependent, the samples

can come from varying distribution or both.

12.3. Learning Approaches

• Online/Incremental
• Randomized
• distributed

33
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• Online/Dynamic Learning, the data are not i.i.d. The samples can be dependent, the samples
can come from varying distribution or both.

• Active,
• Reinforcement Learning.

12.4. Some Current and Future Challenges in Machine Learning

Challenges
1← Data Size→∞+∞

12.4.1. Big Data? Recent times have seen the development of technologies for gathering data-set
of unprecedented size and complexity both in natural science and technology. On the one hand this
has opened novel opportunities (e.g. online teaching), on the other had it has posed new challenges.
In particular, the necessity has emerged to develop learning techniques capable to leverage predefined
budgets and requisites in terms of

• Computations,
• Communications,
• Privacy.

12.4.2. Or Small Data? One of the most evident difference between biological and artificial intel-
ligence is the astounding ability of humans to generalize from limited supervised data. Indeed, while
impressive, current artificial intelligent systems based on supervised learning required huge amounts
of humanly annotated data.

• Unsupervised learning of data representation
• Learning under weak supervision.
• Learning and exploiting structure among learning tasks.
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APPENDIX A

Mathematical Tools

These notes present a brief summary of some of the basic definitions from calculus that we will need
in this class. Throughout these notes, we assume that we are working with the base field R.

A.1. Structures on Vector Spaces

A vector space V is a set with a linear structure. This means we can add elements of the vector
space or multiply elements by scalars (real numbers) to obtain another element. A familiar example
of a vector space is Rn. Given x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we can form a new vector
x+ y = (x1 + y1, . . . , xn + yn) ∈ Rn. Similarly, given r ∈ R, we can form rx = (rx1, . . . , rxn) ∈ Rn.

Every vector space has a basis. A subset B = {v1, . . . , vn} of V is called a basis if every vector v ∈ V
can be expressed uniquely as a linear combination v = c1v1 + · · ·+ cmvm for some constants c1, . . . , cm ∈
R. The cardinality (number of elements) of V is called the dimension of V . This notion of dimension
is well defined because while there is no canonical way to choose a basis, all bases of V have the same
cardinality. For example, the standard basis on Rn is e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1). This shows that Rn is an n-dimensional vector space, in accordance with the notation. In
this section we will be working with finite dimensional vector spaces only.

We note that any two finite dimensional vector spaces over R are isomorphic, since a bijection be-
tween the bases can be extended linearly to be an isomorphism between the two vector spaces. Hence,
up to isomorphism, for every n ∈ N there is only one n-dimensional vector space, which is Rn. However,
vector spaces can also have extra structures that distinguish them from each other, as we shall explore
now.

A distance (metric) on V is a function d : V × V → R satisfying:
• (positivity) d(v, w) ≥ 0 for all v, w ∈ V , and d(v, w) = 0 if and only if v = w.
• (symmetry) d(v, w) = d(w, v) for all v, w ∈ V .
• (triangle inequality) d(v, w) ≤ d(v, x) + d(x,w) for all v, w, x ∈ V .

The standard distance function on Rn is given by d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2. Note that
the notion of metric does not require a linear structure, or any other structure, on V ; a metric can be
defined on any set.

A similar concept that requires a linear structure on V is norm, which measures the “length” of
vectors in V . Formally, a norm is a function ‖ · ‖ : V → R that satisfies the following three properties:

• (positivity) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.
• (homogeneity) ‖rv‖ = |r|‖v‖ for all r ∈ R and v ∈ V .
• (subadditivity) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

For example, the standard norm on Rn is ‖x‖2 =
√
x2

1 + · · ·+ x2
n, which is also called the `2-norm. Also

of interest is the `1-norm ‖x‖1 = |x1| + · · · + |xn|, which we will study later in this class in relation to
sparsity-based algorithms. We can also generalize these examples to any p ≥ 1 to obtain the `p-norm,
but we will not do that here.

Given a normed vector space (V, ‖ · ‖), we can define the distance (metric) function on V to be
d(v, w) = ‖v − w‖. For example, the `2-norm on Rn gives the standard distance function

d(x, y) = ‖x− y‖2 =
√

(x1 − y1)2 + · · ·+ (xn − yn)2,

while the `1-norm on Rn gives the Manhattan/taxicab distance,

d(x, y) = ‖x− y‖1 = |x1 − y1|+ · · ·+ |xn − yn|.

As a side remark, we note that all norms on a finite dimensional vector space V are equivalent.
This means that for any two norms µ and ν on V , there exist positive constants C1 and C2 such that for
all v ∈ V , C1µ(v) ≤ ν(v) ≤ C2µ(v). In particular, continuity or convergence with respect to one norm
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implies continuity or convergence with respect to any other norms in a finite dimensional vector space.
For example, on Rn we have the inequality ‖x‖1/

√
n ≤ ‖x‖2 ≤ ‖x‖1.

Another structure that we can introduce to a vector space is the inner product. An inner product on
V is a function 〈·, ·〉 : V × V → R that satisfies the following properties:

• (symmetry) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .
• (linearity) 〈r1v1 + r2v2, w〉 = r1〈v1, w〉+ r2〈v2, w〉 for all r1, r2 ∈ R and v1, v2, w ∈ V .
• (positive-definiteness) 〈v, v〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0 if and only if v = 0.

For example, the standard inner product on Rn is 〈x, y〉 = x1y1 + · · ·+ xnyn, which is also known as the
dot product, written x · y.

Given an inner product space (V, 〈·, ·〉), we can define the norm of v ∈ V to be ‖v‖ =
√
〈v, v〉. It is

easy to check that this definition satisfies the axioms for a norm listed above. On the other hand, not
every norm arises from an inner product. The necessary and sufficient condition that has to be satisfied
for a norm to be induced by an inner product is the paralellogram law:

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.
If the parallelogram law is satisfied, then the inner product can be defined by polarization identity:

〈v, w〉 =
1

4

(
‖v + w‖2 − ‖v − w‖2

)
.

For example, you can check that the `2-norm on Rn is induced by the standard inner product, while the
`1-norm is not induced by an inner product since it does not satisfy the parallelogram law.

A very important result involving inner product is the following Cauchy-Schwarz inequality:

〈v, w〉 ≤ ‖v‖‖w‖ for all v, w ∈ V.
Inner product also allows us to talk about orthogonality. Two vectors v and w in V are said to

be orthogonal if 〈v, w〉 = 0. In particular, an orthonormal basis is a basis v1, . . . , vn that is orthogo-
nal (〈vi, vj〉 = 0 for i 6= j) and normalized (〈vi, vi〉 = 1). Given an orthonormal basis v1, . . . , vn, the
decomposition of v ∈ V in terms of this basis has the special form

v =

n∑
i=1

〈v, vn〉vn.

For example, the standard basis vectors e1, . . . , en form an orthonormal basis of Rn. In general, a basis
v1, . . . , vn can be orthonormalized using the Gram-Schmidt process.

Given a subspace W of an inner product space V , we can define the orthogonal complement of W
to be the set of all vectors in V that are orthogonal to W ,

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈W}.
If V is finite dimensional, then we have the orthogonal decomposition V = W ⊕W⊥. This means every
vector v ∈ V can be decomposed uniquely into v = w+w′, where w ∈W and w′ ∈W⊥. The vector w is
called the projection of v on W , and represents the unique vector in W that is closest to v.

A.2. Matrices

In addition to talking about vector spaces, we can also talk about operators on those spaces. A linear
operator is a function L : V →W between two vector spaces that preserves the linear structure. In finite
dimension, every linear operator can be represented by a matrix by choosing a basis in both the domain
and the range, i.e. by working in coordinates. For this reason we focus the first part of our discussion on
matrices.

If V is n-dimensional and W is m-dimensional, then a linear map L : V → W is represented by
an m × n matrix A whose columns are the values of L applied to the basis of V . The rank of A is the
dimension of the image of A, and the nullity of A is the dimension of the kernel of A. The rank-nullity
theorem states that rank(A) + nullity(A) = m, the dimension of the domain of A. Also note that the
transpose of A is an n×m matrix A> satisfying

〈Av,w〉Rm = (Av)>w = v>A>w = 〈v,A>w〉Rn

for all v ∈ Rn and w ∈ Rm.
Let A be an n × n matrix with real entries. Recall that an eigenvalue λ ∈ R of A is a solution to the

equationAv = λv for some nonzero vector v ∈ Rn, and v is the eigenvector ofA corresponding to λ. IfA
is symmetric, i.e. A> = A, then the eigenvalues ofA are real. Moreover, in this case the spectral theorem
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tells us that there is an orthonormal basis of Rn consisting of the eigenvectors of A. Let v1, . . . , vn be this
orthonormal basis of eigenvectors, and let λ1, . . . , λn be the corresponding eigenvalues. Then we can
write

A =

n∑
i=1

λiviv
>
i ,

which is called the eigendecomposition of A. We can also write this as

A = V ΛV >,

where V is the n × n matrix with columns vi, and Λ is the n × n diagonal matrix with entries λi. The
orthonormality of v1, . . . , vn makes V an orthogonal matrix, i.e. V −1 = V >.

A symmetric n×nmatrixA is positive definite if v>Av > 0 for all nonzero vectors v ∈ Rn. A is pos-
itive semidefinite if the inequality is not strict (i.e. ≥ 0). A positive definite (resp. positive semidefinite)
matrix A has positive (resp. nonnegative) eigenvalues.

Another method for decomposing a matrix is the singular value decomposition (SVD). Given an
m× n real matrix A, the SVD of A is the factorization

A = UΣV >,

where U is an m ×m orthogonal matrix (U>U = I), Σ is an m × n diagonal matrix, and V is an n × n
orthogonal matrix (V >V = I). The columns u1, . . . , um of U form an orthonormal basis of Rm, and the
columns v1, . . . , vn of V form an orthonormal basis of Rn. The diagonal elements σ1, . . . , σmin{m,n} in Σ
are nonnegative and called the singular values of A. This factorization corresponds to the decomposi-
tion

A =

min{m,n}∑
i=1

σiuiv
>
i .

This decomposition shows the relations between σi, ui, and vi more clearly: for 1 ≤ i ≤ min{m,n},
Avi = σiui AA>ui = σ2

i ui

A>ui = σivi A>Avi = σ2
i vi

This means the ui’s are eigenvectors of AA> with corresponding eigenvalues σ2
i , and the vi’s are eigen-

vectors of A>A, also with corresponding eigenvalues σ2
i .

Given an m× n matrix A, we can define the spectral norm of A to be largest singular value of A,

‖A‖spec = σmax(A) =
√
λmax(AA>) =

√
λmax(A>A).

Another common norm on A is the Frobenius norm,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√
trace(AA>) =

√
trace(A>A) =

√√√√min{m,n}∑
i=1

σ2
i .

However, since the space of all matrices can be identified with Rm×n, the discussion in Section A.1 still
holds and all norms on A are equivalent.
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